Skip to main content
Log in

Effect of aging on fatigue crack growth at sn-pb/cu interfaces

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of isothermal aging on fatigue crack growth behavior at the Sn-Pb solder/Cu interface was examined, with emphasis on the role of interfacial microstructure. Flexural peel interface-crack specimens were made from the joints of eutectic Sn-Pb solder and Cu and were further aged at 443 K for 7 and 30 days. Kinetics of fatigue crack growth along the solder/Cu interfaces were measured from flexural peel specimens as a function of strain energy release rate. Aging was found to induce not only microstructural changes in the solder and at the interface, but also degradation in fatigue crack growth resistance of the interface from the fatigue threshold to the fast fracture. The fatigue threshold decreased from 25 to 20 J/m2 after aging for 7 days and to 10 J/m2 following aging for 30 days. The degradation in the fatigue crack growth resistance is related to the formation of a Pbrich layer at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solder Mechanics—A State of the Art Assessment, D.R. Frear, W.B. Jones, and K.R. Kinsman, eds., TMS, Warrendale, PA, 1991.

    Google Scholar 

  2. Solder Joint Reliability: Theory and Applications, J.H. Lau, ed., Van Nostrand Reinhold, New York, NY, 1991.

    Chapter  Google Scholar 

  3. The Mechanics of Solder Alloy Interconnects, D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau, eds., Van Nostrand Reinhold, New York, NY, 1994.

    Google Scholar 

  4. R.N. Wild:Weld. J., Weld. Res. Suppl, 1972, vol. 51, pp. 521-S-526-S.

    Google Scholar 

  5. E.R. Bangs and R.E. Beal:Weld. J., Weld. Res. Suppl., 1975, vol. 54, pp. 377-S-383-S.

    Google Scholar 

  6. D.R. Frear, D. Grivas, and J.W. Morris, Jr.:J. Electron. Mater, 1988, vol. 17, pp. 171–80.

    Article  Google Scholar 

  7. D.R. Frear, D. Grivas, and J.W. Morris, Jr.:J. Met., 1988, vol. 40 (6), pp. 18–22.

    Google Scholar 

  8. D.R. Frear, D. Grivas, and J.W. Morris, Jr.:J. Electron. Mater., 1989, vol. 18, pp. 671–80.

    Article  Google Scholar 

  9. D.R. Frear:IEEE Trans. Comp. Hybrids, Manuf. Technol, 1989, vol. 12, pp. 492–501.

    Article  Google Scholar 

  10. D. Tribula, D. Grivas, D.R. Frear, and J.W. Morris, Jr.:ASME J. Electron. Packag., 1989, vol. 111, pp. 83–89.

    Article  Google Scholar 

  11. R. Satoh, K. Arakawa, M. Harada, and K. Matsui:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1991, vol. 14, pp. 224–32.

    Article  Google Scholar 

  12. J. Seyyedi:ASME J. Electron. Packag., 1993, vol. 115, pp. 305–11.

    Article  Google Scholar 

  13. N.F. Enke, T.J. Kilinski, S.A. Schroeder, and J.R. Lesniak:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1989, vol. 12, pp. 459–68.

    Article  Google Scholar 

  14. T.S.E. Summers and J.W. Morris, Jr.:ASME J. Electron. Packag., 1990, vol. 112, pp. 94–99.

    Article  Google Scholar 

  15. Z. Mei and J.W. Morris, Jr.:ASME J. Electron. Packag., 1992, vol. 114, pp. 104–08.

    Article  Google Scholar 

  16. Z. Guo, A.F. Sprecher, and H. Conrad:ASME J. Electron. Packag., 1992, vol. 114, pp. 112–17.

    Article  Google Scholar 

  17. Z. Guo and H. Conrad:ASME J. Electron. Packag., 1993, vol. 115, pp. 159–64.

    Article  Google Scholar 

  18. W. Engelmaier:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1983, vol. CHMT-6, pp. 232–37.

    Article  Google Scholar 

  19. R. Subrahmanyan, J.R. Wilcox, and C.-Y. Li:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1989, vol. 12, pp. 480–91.

    Article  Google Scholar 

  20. Y.-H. Pao:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1992, vol. 15, pp. 559–70.

    Article  Google Scholar 

  21. H.D. Solomon:IEEE Trans. Comp. Hybrids, Manuf. Technol., 1986, vol. CHMT-9, pp. 423–32.

    Article  Google Scholar 

  22. E.C. Cutiongco, S. Waynman, M.E. Fine, and D.A. Jeannnotte:ASME J. Electron. Packag., 1990, vol. 112, pp. 110–14.

    Article  Google Scholar 

  23. W.A. Logsdon, P.K. Liaw, and M.A. Burke:Eng. Fract. Mech., 1990, vol. 36, pp. 183–218.

    Article  Google Scholar 

  24. P.K. Liaw and M.A. Burke:Scripta Metall, 1989, vol. 23, pp. 747- 52.

    Article  Google Scholar 

  25. S.-M. Lee and D.S. Stone:ASME J. Electron. Packag., 1992, vol. 114, pp. 118–21.

    Article  Google Scholar 

  26. R.K. Govila, Y.-H. Pao, C. Lamer, J. Lau, S. Twerefour, S. Erasmus, and S. Dolot:ASME J. Electron. Packag., 1994, vol. 116, pp. 184- 90.

    Article  Google Scholar 

  27. Z. Zhang and J.K. Shang:Metall. Mater. Trans. A, in press, 1995.

  28. L. Zakraysek:Weld. J., Weld. Res. Suppl, 1972, vol. 51, pp. 536-S-541xxS.

    Google Scholar 

  29. P.L. Blum, J. Pelissier, and G. Silvestre:Solid State Technol, 1973, vol. 16 (3), pp. 55–58.

    Google Scholar 

  30. K.N. Tu:Acta Metall, 1973, vol. 21, pp. 347–54.

    Article  Google Scholar 

  31. D. Frear, D. Grivas, and J.W. Morris, Jr.:J. Electron. Mater., 1987, vol. 16, pp. 181–86.

    Article  Google Scholar 

  32. P.T. Vianco, P.F. Hlava, and A.C. Kilgo:J. Electron. Mater., 1994, vol. 23, pp. 583–94.

    Article  Google Scholar 

  33. P.T. Vianco, K.L. Erickson, and P.L. Hopkins:J. Electron. Mater., 1994, vol. 23, pp. 721–27.

    Article  Google Scholar 

  34. D.R. Frear and P.T. Vianco:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1509–23.

    Article  Google Scholar 

  35. C.H. Raeder, L.E. Felton, V.A. Tanzi, and D.B. Knorr:J. Electron. Mater., 1994, vol. 23, pp. 611–17.

    Article  Google Scholar 

  36. B.T. Lamp:Weld. J., Weld. Res. Suppl, 1976, vol. 55 (10), pp. 330-S-340-S.

    Google Scholar 

  37. C. Wright:IEEE Trans. Parts, Hybrids and Packag., 1977, vol. PHP-13, pp. 202–07.

    Article  Google Scholar 

  38. C.J. Thwaites:Circuit World, 1984, vol. 11 (1), pp. 8–12.

    Article  Google Scholar 

  39. D. Yao and J.K. Shang: University of Illinois at Urbana-Champaign, Urbana, IL, unpublished research, 1995.

  40. A.G. Evans and J.W. Hutchinson:Acta Metall, 1989, vol. 37, pp. 909–16.

    Article  Google Scholar 

  41. H.C. Cao and A.G. Evans:Mech. Mater., 1989, vol. 7, pp. 295–304.

    Article  Google Scholar 

  42. S.K. Kang, N.D. Zommer, D.L. Feucht, and R.W. Heckel:IEEE Trans. Parts, Hybrids and Packag., 1977, vol. PHP-13, pp. 318–21.

    Article  Google Scholar 

  43. H.N. Keller:IEEE Trans. Comp. Hybrids, Manuf. Technol, 1979, vol. CHMT-2, pp. 180–95.

    Article  Google Scholar 

  44. H.N. Keller:IEEE Trans. Comp. Hybrids, Manuf. Technol, 1981, vol. CHMT-4, pp. 132–39.

    Article  Google Scholar 

  45. P.M. Hall:IEEE Trans. Comp. Hybrids, Manuf. Technol, 1981, vol. CHMT-4, pp. 403–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, D., Shang, J.K. Effect of aging on fatigue crack growth at sn-pb/cu interfaces. Metall Mater Trans A 26, 2677–2685 (1995). https://doi.org/10.1007/BF02669424

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669424

Keywords

Navigation