Skip to main content
Log in

Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10–150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.X. Liu, M.L. Li, D.W. Kim, S. Gu, and K.N. Tu, J. Appl. Phys. 118, 233 (2015).

    Google Scholar 

  2. C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).

    Article  Google Scholar 

  3. J. Xu, S. Xue, P. Xue, W.M. Long, and Q.K. Zhang, J. Mater. Sci.: Mater. Electron. 27, 8771 (2016).

    Google Scholar 

  4. B. Zhou, Q. Zhou, T.R. Bieler, and T.K. Lee, J. Electron. Mater. 44, 895 (2015).

    Article  Google Scholar 

  5. T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.K. Lee, and K.C. Liu, J. Electron. Mater. 41, 283 (2012).

    Article  Google Scholar 

  6. J.G. Lee, L. Telang, K.N. Subramanian, and T.R. Bieler, J. Electron. Mater. 31, 1152 (2002).

    Article  Google Scholar 

  7. A.U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).

    Article  Google Scholar 

  8. T.K. Lee, T.R. Bieler, C.U. Kim, and H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology: From Microstructures to Reliability (Dordrecht: Springer, 2014), p. 84.

    Google Scholar 

  9. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).

    Article  Google Scholar 

  10. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  Google Scholar 

  11. C. Coston and N.H. Nachtrieb, J. Phys. Chem. 68, 2219 (1964).

    Article  Google Scholar 

  12. S. Wei, H.C. Ma, J.Q. Chen, and J.D. Guo, J. Alloys Compd. 687, 999 (2016).

    Article  Google Scholar 

  13. Y.W. Wang and P.S. Ho, Appl. Phys. Lett. 103, 121909 (2013).

    Article  Google Scholar 

  14. M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008).

    Article  Google Scholar 

  15. T.L. Yang, J.J. Yu, C.C. Li, Y.F. Lin, and C.R. Kao, J. Alloys Compd. 627, 281 (2015).

    Article  Google Scholar 

  16. T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, and C.R. Kao, Scr. Mater. 80, 37 (2014).

    Article  Google Scholar 

  17. M.L. Huang, J.F. Zhao, Z.J. Zhang, and N. Zhao, J. Alloys Compd. 678, 370 (2016).

    Article  Google Scholar 

  18. W.N. Hsu and F.Y. Ouyang, Acta Mater. 81, 141 (2014).

    Article  Google Scholar 

  19. A.T. Wu and Y.C. Hsieh, Appl. Phys. Lett. 92, 2958 (2008).

    Google Scholar 

  20. A.T. Wu, A.M. Gusak, K.N. Tu, and C.R. Kao, Appl. Phys. Lett. 86, 6483 (2005).

    Google Scholar 

  21. H. Shen, W.X. Zhu, Y. Li, N. Tamura, and K. Chen, Sci. Rep. 6, 24418 (2016).

    Article  Google Scholar 

  22. A. Lee, W. Liu, C.E. Ho, and K.N. Subramanian, J. Appl. Phys. 102, 1203 (2007).

    Google Scholar 

  23. T.C. Huang, T.L. Yang, J.H. Ke, C.C. Li, and C.R. Kao, J. Alloys Compd. 555, 237 (2013).

    Article  Google Scholar 

  24. Y. Zuo, L. M. Ma, F. Guo, L. Qiao, Y.T. Shu, and J. Han, in ICEPT Conference Proceedings (2012), pp. 898–901.

  25. B.F. Dyson, J. Appl. Phys. 37, 2375 (1966).

    Article  Google Scholar 

Download references

Acknowledgements

The authors recognize the support of the Beijing Natural Science Foundation (2172006), the Beijing Nova Program (Z161100004916155), and the General Project of Science and Technology of Beijing Municipal Education Commission (SQKM2016100 05024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Bieler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Y., Bieler, T.R., Zhou, Q. et al. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints. J. Electron. Mater. 47, 1881–1895 (2018). https://doi.org/10.1007/s11664-017-5980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5980-0

Keywords

Navigation