Genetic Analysis and Mapping of Seedling Resistance to Septoria Tritici Blotch in ‘Steele-Nd’/‘Nd 735’ Bread Wheat Population

Abstract

Septoria tritici blotch (STB) caused by Mycosphaerella graminicola, is one of the most destructive foliar diseases of wheat (Triticum aestivum L.) especially in temperate and humid regions across the world. The susceptibility of recently released varieties, evolution of resistance to fungicides and increasing incidence of STB disease emphasizes the need to understand the genetics of resistance to this disease and to incorporate host resistance into adapted cultivars. This study aimed to decipher the genetics and map the resistance to STB using a recombinant inbred line (RIL) mapping population derived from ‘Steele-ND’ (susceptible parent) and ‘ND 735’ (resistant parent). The RILs were evaluated in three greenhouse experiments, using a North Dakota (ND) isolate of STB pathogen. The mean disease severity of parental genotypes, ‘ND 735’ (11.96%) and ‘Steele-ND’ (66.67%) showed significant differences (p < 0.05). The population segregated for STB and the frequency distribution of RILs indicated quantitative inheritance for resistance. The mean disease severity in RILs ranged from 0 to 71.55% with a mean of 21.98%. The genome map of this population was developed using diversity array technology (DArT) and simple sequence repeat (SSR) markers. The framework linkage map of this population was developed using 469 molecular markers. This map spanned a total distance of 1,789.3 cM and consisted of 17 linkage groups. QTL mapping using phenotypic data and the framework linkage maps detected three QTL through composite interval mapping. One QTL was consistently detected in all experiments on the long arm of chromosome 5B, and explained up to 10.2% phenotypic variation. The other two QTLs, detected in single environments, were mapped to 1D and 7A and explain 13% and 5.5% of the phenotypic variation, respectively. The map position of the consistent QTL on 5BL coincides with the map position of durable resistance gene Stb1 suggesting the importance of this region of ‘ND 735’ as a source of durable STB resistance for the wheat germplasm.

This is a preview of subscription content, access via your institution.

References

  1. Adhikari, T.B., Anderson, J.M., Goodwin, S.B. 2003. Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathol. 93:1158–1164.

    CAS  Article  Google Scholar 

  2. Adhikari, T.B., Cavaletto, J.R., Dubcovsky, J., Gieco, J.O., Schlatter, A.R., Goodwin, S.B. 2004a. Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathol. 94:1198–1206.

    CAS  Article  Google Scholar 

  3. Adhikari, T.B., Yang, X., Cavaletto, J.R., Hu, X., Buechley, G., Ohm, H.W., Shaner, G., Goodwin, S.B. 2004b. Molecular mapping of the Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor. Appl. Genet. 109:944–953.

    CAS  PubMed  Article  Google Scholar 

  4. Adhikari, T.B., Wallwork, H., Goodwin, S.B. 2004c. Microsatellite markers linked to the Stb2 and S tb3 genes for resistance to Septoria tritici blotch. Crop Sci. 44:1403–1411.

    CAS  Article  Google Scholar 

  5. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S.Y., Uszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H., Hayden, M.J., Howes, N., Sharp, P., Vaughan, P., Rathmell, B., Huttner, E., Kilian, A. 2006. Diversity array technology (DArT) for high throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113:1409–1420.

    CAS  PubMed  Article  Google Scholar 

  6. Ali, S., Singh, P.K., McMullen, M.P., Mergoum, M., Adhikari, T.B. 2008. Resistance to multiple leaf spot diseases in wheat. Euphytica 159:167–179.

    Article  Google Scholar 

  7. Arraianio, L.S., Brown, J.K.M. 2006. Identification of isolate-specific and partial resistance to Septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol. 55:726–738.

    Article  Google Scholar 

  8. Arraianio, L.S., Chartrain, L., Bossolini, E., Slatter, H.N., Keller, B., Brown, J.K.M. 2007. A gene in European wheat cultivars for resistance to an African isolate of Mycosphaerella graminicola. Plant Pathol. 56:73–78.

    Google Scholar 

  9. Brading, P.A., Verstappen, E.C.P., Kema, G.H.J., Brown, J.K.M. 2002. A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathol. 92:439–445.

    Article  Google Scholar 

  10. Chartrain, L., Brading, P.A., Widdowson, J.P., Brown, J.K.M. 2004. Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathol. 94:497–504.

    CAS  Article  Google Scholar 

  11. Chartrain, L., Berry, S.T., Brown, J.K.M. 2005. Resistance of wheat line kavkaz-k4500 l.6.a.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathol. 95:664–671.

    CAS  Article  Google Scholar 

  12. Eriksen, L., Borum, F., Jahoor, A. 2003. Inheritance and localization of resistance to Mycosphaerella graminicola causing Septoria tritici blotch and plant height in wheat (Triticum aestivum L.) genome with DNA markers. Theor. Appl. Genet. 107:515–527.

    CAS  PubMed  Article  Google Scholar 

  13. Eyal, Z. 1999. The Septoria tritici and Stagnospora nodorum blotch diseases of wheat. Eur. J. Plant Pathol. 105:629–641.

    Article  Google Scholar 

  14. Eyal, Z., Scharen, A.L., Prescott, J.M., Van Ginkel, M. 1987. The Septoria Diseases of Wheat: The Concepts and Methods of Disease Management. International Maize and Wheat Improvement Center (CIMMYT), Mexico DF, Mexico, 55 pp.

    Google Scholar 

  15. Francki, M.G., Walker, E., Crawford, A.C., Broughton, S., Ohm, H.W., Barclay, I., Wilson, R.E., McLean, R. 2009. Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol. Genet. Genomics 281:181–191.

    CAS  PubMed  Article  Google Scholar 

  16. Gaunt, R.E., Thomson, W.J., Suctcliffe, J. 1986. The assessment of speckled leaf blotch in winter wheat in New Zealand. Ann. Bot. 58:33–38.

    Article  Google Scholar 

  17. Ghaffary, S.M.T., Robert, O., Laurent, V., Lonnet, P., Magale, E., van der Lee, T.A.J., Visser, R.G.F., Kema, G.H.J. 2011. Genetic analysis of resistance to Septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor. Appl. Genet. DOI https://doi.org/10.1007/s00122-011-1623-7

    Article  Google Scholar 

  18. Gilbert, J., Woods, S.M. 2001. Leaf spot diseases of spring wheat in southern Manitoba farm fields under conventional and conservation tillage. Can. J. Plant Sci. 81:551–559.

    Google Scholar 

  19. Gilchrist, L., Gomez, B., Gonzalez, R., Fuentes, S., Mujeeb-Kazi, A., Pfeiffer, W., Rajaram, S., Rodriguez, B., Skovmand, B., Van Ginkel, M., Velazquez, C. 1999. Septoria tritici resistance sources and breeding progress at CIMMYT, 1970–99. In: Krupinsky, J. (ed.), Septoria and Stagonospora Diseases of Cereals. CIMMYT, Mexico, pp. 134–139.

    Google Scholar 

  20. Gisi, U., Chin, K.M., Knbapova, G., Farber, R.K., Mohr, U., Parisi, S., Sierotzki, H., Steinfeld, U. 2000. Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurins fungicides. Crop Protection 19:863–872.

    CAS  Article  Google Scholar 

  21. Gisi, U., Pavic, L., Stanger, C., Hugelshofer, U., Sierotzki, H. 2005. Dynamics of Mycosphaerella graminicola population in response to selection by different fungicides. In: Lyr, H., Russell, P.E., Dehne, H.W., Gisi, U., Kuch, K.H. (eds), Modern Fungicides and Antifungal Compounds II. 14th International Reinhardsbrunn Symposium, AgroConcept, Bonn, Verlag Th. Mann, Gelsenkirchen, Germany, pp. 89–101.

    Google Scholar 

  22. Goodwin, S.B. 2007. Back to basics and beyond: Increasing the level of resistance to Septoria tritici blotch in wheat. Austral. Plant Pathol. 36:532–538.

    Article  Google Scholar 

  23. Guidet, F., Rogowsky, R., Taylor, C., Song, W., Langridge, P. 1991. Cloning and characterization of a new rye-specific repeat sequence. Genome 34:81–87.

    Article  Google Scholar 

  24. Jlibene, M., Gustafson, J.P., Rajaram, S. 1994. Inheritance of resistance to Mycosphaerella graminicola in hexaploid wheat. Plant Breed. 112:301–310.

    Article  Google Scholar 

  25. Kema, G.H.J., Annone, J.G., Sayoud, R., Van Silfhout, C.H., Van Ginkel, J., de Bree, I. 1996. Genetic variation for virulence and resistance in wheat- Mycosphaerella graminicola pathosystem. I. Interactions between pathogen isolates and host cultivars. Phytopathol. 86:200–212.

    Article  Google Scholar 

  26. King, J.E., Cook, R.J., Melville, S.C. 1983. A review of Septoria diseases of wheat and barley. Ann. App. Biol. 103:354–373.

    Article  Google Scholar 

  27. Kosambi, D.D. 1994. The estimation of map distances from recombination values. Ann. Eugen. 12:172–175.

    Article  Google Scholar 

  28. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L. 1987. Mapamker: An interactive computer package for constructing primary linkage map for experimental and natural populations. Genomics 1:174–181.

    CAS  PubMed  Article  Google Scholar 

  29. Langridge, P., Lagudah, E.S., Holton, T.A., Appels, R., Sharp, P.J., Chalmers, K.J. 2001. Trends in genetic and genomic analyses in wheat: A review. Aust. J. Agri. Res. 53:1043–1077.

    Article  Google Scholar 

  30. Liu, Y.G., Anderson, J.A., Hu, J., Friesen, T.L., Rasmussen, J.B., Faris, J.D. 2005. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor. Appl. Genet. 111:782–794.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. McCartney, C.A., Brule-Babel, A.L., Lamari, L. 2002. Inheritance of race-specific resistance to Mycosphaerella graminicola in the spring wheat cultivar ST6. Theor. Appl. Genet. 107:1181–1186.

    Article  CAS  Google Scholar 

  32. Mergoum, M., Frohberg, R.C., Miller, J.D., Stack, R.W. 2005. Registration of ‘steele-ND’ Wheat. Crop Sci. 45:1163–1164.

    Article  Google Scholar 

  33. Mergoum, M., Frohberg, R.C., Singh, P.K., Ali, S., Rasmussen, J.B., Miller, J.D. 2006. Registration of spring wheat germplasm ND 735. Crop Sci. 46:1003–1004.

    Article  Google Scholar 

  34. Mergoum, M., Singh, P.K., Ali, S., Elias, E.M., Anderson, J.A., Glover, K.D., Adhikari, T.B. 2007. Evaluation of spring wheat germplasm for Septoria diseases. Plant Dis. 91:1310–1315.

    CAS  PubMed  Article  Google Scholar 

  35. Mergoum, M., Singh, P.K., Frohberg, R.C., Kianian, S.F., Ghavami, F., Hussain, K., Adhikari, T.B., Harilal, V.E., Simsek, S. 2009. Registration of Steele-ND/ND 735 wheat recombinant inbred lines mapping population. J. Plant Reg. 3:300–306.

    Article  Google Scholar 

  36. Paillard, S., Schnurbusch, T., Weinzeler, M., Messmer, M., Sourdille, P., Abderhalden, O., Keller, B., Schachermayr, G. 2003. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 107:1235–1242.

    CAS  PubMed  Article  Google Scholar 

  37. Saadaoui, E.M. 1987. Physiologic specialization of Septoria tritici in Morocco. Plant Dis. 71:153–155.

    Article  Google Scholar 

  38. SAS Institute. 1999. SAS/STAT User’s guide, release 8.2, 8.1, and 8.0. SAA Institute, Cary, NY, USA.

    Google Scholar 

  39. Semagn, F.K., Bjornstad, A., Skinnes, H., Maroy, A.G., Tarkegne, Y., William, M. 2006. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Simon, M.R., Cordo, C.A. 1997. Inheritance of partial resistance to Septoria tritici in wheat (Triticum aestivum L.): Limitation of pycnidia number and spore production. Agronomie 17:343–347.

    Article  Google Scholar 

  41. Simon, M.R., Ayala, F.M., Cordo, C.A., Roder, M.S., Borner, A. 2004. Molecular mapping of quantitative trait loci determining resistance to Septoria tritici blotch caused by Mycosphaerella graminicola in wheat. Euphytica 138:41–48.

    CAS  Article  Google Scholar 

  42. Simon, M.R., Khlestkina, E.K., Castillo, N.S., Börner, A. 2010. Mapping quantitative resistance to Septoria tritici blotch in spelt wheat. Eur. J. Plant Pathol. 128:317–324.

    Article  Google Scholar 

  43. Singh, P.K., Mergoum, M., Ali, S., Adhikari, T.B., Elias, E.M., Hughes, G.R. 2006. Identification of new sources of resistance to tan spot, Stagonospora nodorum blotch, and Septoria tritici blotch of wheat. Crop Sci. 46:2047–2053.

    Article  Google Scholar 

  44. Singh, P.K., Mergoum, M., Adhikari, T.B., Shah, T., Gavami, F., Kianian, S.F. 2010. Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol. Breed. 25:369–379.

    CAS  Article  Google Scholar 

  45. Singh, P.K., Mergoum, M., Adhikari, T.B., Gavami, F., Kianian, S.F. 2011. Genetics and mapping of resistance to spore inoculum and culture filtrate of Phaeosphaeria nodorum in spring wheat line ND 735. Crop Protection 30:141–146.

    CAS  Article  Google Scholar 

  46. Somasco, O.A., Qualset, C.O., Gilchrist, D.G. 1996. Single-gene resistance to Septoria tritici blotch in spring wheat cultivar ‘Tadina’. Plant Breed. 115:261–267.

    Article  Google Scholar 

  47. Somers, D.G., Isaac, P., Edwards, K. 2004. A high density microsatellite consensus map of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:1105–1114.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Varshney, R.K., Sharma, P.C., Gupta, P.K., Balyan, H.S., Ramesh, B., Roy, J.K., Kumar, A., Sen, A. 1998. Low level of polymorphism detected by SSR probes in bread wheat. Plant Breed. 117:182–184.

    Article  Google Scholar 

  49. Wang, S., Basten, C.J., Zeng, B. 2004. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, USA.

    Google Scholar 

  50. Zhang, X., Haley, S.D., Jin, Y. 2001. Inheritance of Septoria tritici blotch resistance in winter wheat. Crop Sci. 41:323–326.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Mergoum.

Additional information

Communicated by A. Börner

Electronic Supplementary Material (ESM)

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Mergoum, M., Harilal, V.E., Singh, P.K. et al. Genetic Analysis and Mapping of Seedling Resistance to Septoria Tritici Blotch in ‘Steele-Nd’/‘Nd 735’ Bread Wheat Population. CEREAL RESEARCH COMMUNICATIONS 41, 199–210 (2013). https://doi.org/10.1556/CRC.2013.0005

Download citation

Keywords

  • wheat
  • Triticum aestivum L.
  • Septoria tritici blotch
  • QTL analysis