Skip to main content
Log in

Mapping quantitative resistance to septoria tritici blotch in spelt wheat

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The foliar wheat disease septoria tritici blotch can cause significant yield losses. A source of resistance has been mapped on chromosome 7D of spelt wheat, Triticum aestivum L. subsp. spelta (L.) Thell. The microsatellite-based genetic map was constructed from a set of 87 single-chromosome recombinant doubled-haploid lines bred from the cross between the landrace ‘Chinese Spring’ and a ‘Chinese Spring’-based line carrying chromosome 7D from spelt wheat. Two regions of the chromosome were associated with isolate-specific QTL expressed one at the seedling and another at the adult plant stage. The seedling resistance locus QStb.ipk-7D1 was found in the centromeric region of chromosome 7D, which corresponds to the location of the major resistance genes Stb4 originating from bread wheat cultivar ‘Tadinia’ and Stb5 originating from Triticum tauschii. The adult resistance locus QStb.ipk-7D2 was found on the short arm of chromosome 7D in a similar position to the locus Lr34/Yr18 known to be effective against multiple pathogens. Composite interval mapping confirmed QStb.ipk-7D1 and QStb.ipk-7D2 to be two distinct loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari, T. B., Cavaletto, J., Dubcovsky, J., Gieco, J. O., Schlatter, A. R., & Goodwin, S. B. (2004). Molecular mapping of the Stb4 gene for resistance to septoria tritici blotch in wheat. Phytopathology, 94, 1198–1206.

    Article  CAS  PubMed  Google Scholar 

  • Arraiano, L. S., Brading, P. A., & Brown, J. K. M. (2001). A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathology, 50, 339–346.

    Article  Google Scholar 

  • Arraiano, L. S., Worland, A. J., Ellerbrook, C., & Brown, J. K. M. (2001). Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theoretical and Applied Genetics, 103, 758–764.

    Article  CAS  Google Scholar 

  • Brading, P. A., Verstappen, E. C. P., Kema, G. H. J., & Brown, J. K. M. (2002). A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology, 92, 439–445.

    Article  PubMed  Google Scholar 

  • Dyck, P. L. (1991). Genetics of adult plant leaf rust resistance in Chinese Spring and `Sturdy´ wheats. Crop Science, 24, 309–311.

    Article  Google Scholar 

  • Hardwick, N. V., Jones, D. R., & Slough, J. E. (2001). Factors affecting diseases of winter wheat in England and Wales, 1989–98. Plant Pathology, 50, 453–462.

    Article  CAS  Google Scholar 

  • Jackson, L. F., Dubcovsky, J., Gallagher, L. W., Wennig, R. L., Heaton, J., Vogt, H., et al. (2000). Regional barley and common and durum wheat performance tests in California. Agronomy Progress Report, 272, 1–56.

    Google Scholar 

  • Jing, H. C., Lovell, D., Gutteridge, R., Jenk, D., Kornyukhin, D., Mitrofanova, O. P., et al. (2008). Phenotypic and genetic analysis of the Triticum monococcum-Mycosphaerella graminicola interaction. New Phytologist, 179, 1121–1132.

    Article  PubMed  Google Scholar 

  • Jlibene, M., Gustafson, J. P., & Rajaram, S. (1994). Inheritance of resistance to Mycosphaerella graminicola in hexaploid wheat. Plant Breeding, 112, 301–310.

    Article  Google Scholar 

  • Kema, G. H. J. (1992). Resistance in spelt wheat to yellow rust. I. Formal analysis and variation for gliadins patterns. Euphytica, 63, 207–217.

    Google Scholar 

  • Kema, G. H. J., & Van Silfhout, C. H. (1997). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. III. Comparative seedling and adult plant experiments. Phytopathology, 87, 266–272.

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina, E. K., Pshenichnikova, T. A., Röder, M. S., & Börner, A. (2009). Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Research Communications, 37, 391–398.

    Article  CAS  Google Scholar 

  • Khlestkina, E. K., Röder, M. S., Pshenichnikova, T. A., & Börner, A. (2010). Functional diversity at the Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Molecular Breeding, 25, 125–132.

    Article  CAS  Google Scholar 

  • Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, H., et al. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., et al. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Laurie, D. A., & Bennett, M. D. (1988). The production of haploid wheat plants from wheat x maize crosses. Theoretical and Applied Genetics, 76, 393–397.

    Article  Google Scholar 

  • Liu, X. M., Smith, C. M., Gill, B. S., & Tolmay, V. (2001). Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theoretical and Applied Genetics, 102, 504–510.

    Article  CAS  Google Scholar 

  • Liu, X. M., Smith, C. M., & Gill, B. S. (2002). Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theoretical and Applied Genetics, 104, 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  • Manly, K. F., Cudmore, R. H., Jr., & Meer, J. M. (2001). Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome, 12, 930–932.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, R. A., Yamazak, Y., Dubcovsky, J., Rogers, J., Morris, C., Somers, D. J., et al. (2008). Catalogue of Gene Symbols for Wheat. http://www.grs.nig.ac.jp/wheat/komugi/genes/.

  • McVey, D. V., & Leonard, K. J. (1990). Resistance to wheat stem rust in spring spelts. Plant Disease, 74, 966–969.

    Article  Google Scholar 

  • Pink, D. A. C., & Law, C. N. (2009). The effect of homoeologous group 7 chromosomes upon adult plant resistance of wheat to yellow rust (Puccinia striiformis). Plant Pathology, 34, 255–262.

    Article  Google Scholar 

  • Plaschke, J., Ganal, M. W., & Röder, M. S. (1995). Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical and Applied Genetics, 91, 1001–1007.

    Article  CAS  Google Scholar 

  • Pshenichnikova, T. A., Osipova, S. V., Permiakova, M. D., Mitrofanova, T. N., Trufanov, V. A., Lohwasser, U., et al. (2008). Mapping of quantitative trait loci (QTL) associated with activity of disulfide reductase and lipoxygenase in grains of bread wheat Triticum aestivum L. seeds. Russian Journal of Genetics, 44, 654–662.

    CAS  Google Scholar 

  • Raman, R., Milgate, A. W., Imtiaz, M., Tan, M. K., Raman, H., Lisle, C., et al. (2009). Molecular mapping and physical location of major gene conferring seedling resistance to Septoria tritici blotch in wheat. Molecular Breeding, 24, 153–164.

    Article  CAS  Google Scholar 

  • Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., et al. (1998). A microsatellite map of wheat. Genetics, 149, 2007–2023.

    PubMed  Google Scholar 

  • Simón, M. R., & Cordo, C. A. (1998). Diallel analysis of the resistance components to Septoria tritici in Triticum aestivum. Plant Breeding, 117, 123–126.

    Article  Google Scholar 

  • Simón, M. R., Perelló, A. E., Cordo, C. A., Larrán, S., van der Putten, P., & Struik, P. C. (2005). Association between septoria tritici blotch, plant height, and heading date in wheat. Agronomy Journal, 97, 1037–1278.

    Article  Google Scholar 

  • Simón, M. R., Worland, C. A., & Struik, P. C. (2005). Chromosomal location of genes encoding for resistance to septoria tritici blotch (Mycosphaerella graminicola) in substitution lines of wheat. Netherlands Journal of Agricultural Sciences, 53, 113–129.

    Google Scholar 

  • Simón, M. R., Ayala, F. M., Cordo, C. A., Röder, M. S., & Börner, A. (2007). The exploitation of wheat (Triticum aestivum)/Aegilops tauschii introgression lines for the detection of gene(s) determining resistance to septoria tritici blotch (Mycosphaerella graminicola). Euphytica, 154, 249–254.

    Article  Google Scholar 

  • Singh, P. K., Mergoum, M., Ali, S., Adhikari, T. B., Elias, E. M., & Hughes, G. R. (2008). Identification of new sources of resistance to tan spot, stagonospora nodorum blotch and septoria tritici blotch of wheat. Crop Science, 46, 2047–2053.

    Article  Google Scholar 

  • Spielmeyer, W., Singh, R. P., McFadden, H., Wellings, C. R., Huerta-Espino, J., Kong, X., et al. (2008). Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theoretical and Applied Genetics, 116, 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Van Beuningen, L. T., & Kohli, M. M. (1990). Deviation from the regression of infection on heading and height as a measure of resistance to septoria tritici blotch in wheat. Plant Disease, 74, 488–493.

    Article  Google Scholar 

  • Wiwart, M., Perkowski, J., Jackowiak, H., Packa, D., Borusiewicz, A., & Busko, M. (2004). Response of some cultivars of spring spelt (Triticum spelta) to Fusarium culmorum infection. Die Bodenkultur, 55, 29–36.

    Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stage of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Simon.

Additional information

Maria Rosa Simon, Elena K. Khlestkina and Nadia S. Castillo contributed equally.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Fig.1

Composite interval mapping of the seedling (A) and adult plant stage (B) resistances, performed using adult-plant and seedling resistance for trait variances, respectively. LRS: likelihood ratio statistic; AE:additive effect. ¨Significant¨and ¨highly significant¨ LRS threshold lines. Histograms show confidence intervals for the QTL. (DOC 75 kb)

Supplementary Fig.2

Composite interval mapping of the seedling (A) and adult plant stages (B) resistances, performed using flowering time for trait variances. LRS: likelihood ratio statistic; AE: additive effect. ¨Significant¨ and ¨highly significant¨ LRS threshold lines. Histograms show confidence intervals for the QTL. (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, M.R., Khlestkina, E.K., Castillo, N.S. et al. Mapping quantitative resistance to septoria tritici blotch in spelt wheat. Eur J Plant Pathol 128, 317–324 (2010). https://doi.org/10.1007/s10658-010-9640-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9640-y

Keywords

Navigation