Skip to main content
Log in

Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The current study was carried out to check the influence of the gradient saline (0, 50, 150, 200, 250 and 300 mM NaCl) on Astragalus gombiformis Pomel. plants grown in pots in greenhouse conditions. The results demonstrated that salt levels above 50 mM substantially reduced the biomass accumulation in both roots and especially in shoots. Similarly, higher salinity (100–300 mM NaCl) resulted significant decline in net photosynthetic (-66.2%), transpiration (-80%), stomatal conductance (-87.7%), intercellular CO2 concentration (-78.1%) and chlorophyll a and b contents (-45.7 and -51%, respectively). Also, leaf relative water content (RWC) was reduced significantly with salinity exceeding 100 mM NaCl, while the leaf water potential (ΨW) decreased significantly as salinity rises. Salt stress increases Na+, Na+/K+ and decreases K+ concentrations in all tissues of A. gombiformis. Compensatory, an accumulation of organic osmolytes such as soluble sugars in response to higher salinity (150–300 mM NaCl) was observed, while proline content increased drastically with progressive salinity. The present study reveals that GPX and GR were highly used to protect from NaCl-induced H2O2. APX might to participate efficiently in restriction of oxidative damages under higher salinity (50–150 mM). The leaf anatomy showed an increase in upper epidermal thickness at higher salt level (300 mM), whereas the total leaf thickness and the mesophyll parenchyma area decreased with salinity exceeding 100 mM NaCl. The distance between vascular bundle and the xylem vessel diameter were reduced only at 300 mM. The stomatal density decreased with enhanced stomata size at 200–300 mM NaCl. Based on these physiological, biochemical and anatomical responses to salinity we conclude that A. gombiformis is unable to maintain the ionic homeostasis and to managing ROS stress at high salinity and therefore can tolerate only mild to moderate salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasamaa K., Söber A. & Rahi M. 2001. Leaf anatomical characteristics associated with shoot hydraulic conductance, stom-atal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust. J. Plant. Physiol. 28: 765–774.

    Google Scholar 

  • Abideen Z., Koyro H.W., Huchzermeyer B., Ahmed M.Z., Gul B. & Khan M.A. 2014. Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environm. Exp. Bot. 105: 70–76.

    Article  CAS  Google Scholar 

  • Acosta-Motos J.R., Diaz-Vivancos P., Alvarez S., Fernandez-Garcia N., Sanchez-Blanco M.J. & Hernandez J.A. 2015. Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242: 829–846.

    Article  CAS  PubMed  Google Scholar 

  • Aghaleh M., Niknam V., Ebrahimzadeh H. & Razavi K. 2011. Effect of salt stress on physiological and antioxidative responses in two species of Salicornia (S. Persica and S. europaea). Acta Physiol. Plant. 33: 1261–1270.

    Article  CAS  Google Scholar 

  • Ahmed M.Z., Shimazaki T., Gulzar S., Kikuchi A., Gul B., Khan M.A. & Watanabe K.N. 2013. The influence of genes regulating transmembrane transport of Na on the salt resistance of Aeluropus lagopoides. Fun. Plant Biol. 40: 860–871.

    Article  CAS  Google Scholar 

  • Aebi H. 1984. “Catalase in vitro.” Methods Enzymol. 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Akram M., Akhtar S., Javed I.U.H., Wahid A. & Rasul E. 2002. Anatomical attributes of different wheat (Triticum aestivum) accessions/varities to NaCl salinity. Inter. J. Agric. Biol. 4: 166–168.

    Google Scholar 

  • Alhdad G.M., Seal C.E., Al-Azzawi M.J. & Flowers T.J. 2013. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environm. Exp. Bot. 87: 120–125.

    Article  CAS  Google Scholar 

  • Ali I., Abbas S.Q., Hameed M., Naz N., Zafar S. & Kanwal S. 2009. Leaf anatomical adaptations in some exotic species of Eucalyptus L’Hér. (Myrtaceae). Pak. J. Bot. 41: 2717–2727.

    Google Scholar 

  • Apel K. & Hirt H. 2004. Reactive oxygen species, Metabolism, Oxidative Stress, and Signal Transduction. Ann. Rev. Plant Biol. 55: 373–399.

    Article  CAS  Google Scholar 

  • Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Poly-phenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

    CAS  Google Scholar 

  • Ashraf M. & Harris P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3–16.

    Article  CAS  Google Scholar 

  • Ashraf M. & Foolad M.R. 2007. Roles of glycine betaine and pro-line in improving plant abiotic stress resistance. Environm. Exp. Bot. 59: 206–216.

    Article  CAS  Google Scholar 

  • Atabayeva S., Nurmahanova A., Minocha S., Ahmetova A., Kenzhebayeva S. & Aidosov S. 2013. The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African J. Biotechnol. 12: 2366–2377.

    Google Scholar 

  • Bartels D. & Ramanjulu S. 2005. Drought and salt tolerance in plants. Plant Sci. 24: 23–58.

    Article  CAS  Google Scholar 

  • Bates L.S., Waldren R.P. & Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Blokhina O., Virolainen E. & Fagerstedt K.V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress. Ann. Bot. 91: 179–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongi G. & Loreto F. 1989. Gas exchange properties of salt-stressed olive (Olea europaea L.) leaves. Plant Physiol. 90: 1408–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosabalidis A.M. & Kofidis G. 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 163: 375–379.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quan-titation of microgram quantities of protein utilizing the principle of protein-dye binding.” Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Burghardt M., Burghardt A., Gall J., Rosenberger C. & Riederer M. 2008. Ecophysiological adaptations of water relations of Teucrium chamaedrys L. to the hot and dry climate of xeric limestone sites in Franconia (Southern Germany). Flora 203: 3–13.

    Article  Google Scholar 

  • Cassaniti C., Romano D. & Flowers T.J. 2012. The Response of Ornamental Plants to Saline Irrigation Water, pp. 131–158. In: Garcia-Garizabal I (ed.), Irrigation-Water Management, Pollution and Alternative Strategies, Rijeka.

    Google Scholar 

  • Chaieb M. & Boukhris M. 1998. Flore succinte et illustrée des zones arides et sahariennes de Tunisie. Association pour la Protection de la Nature et de l’Environnement, L’Or du temps, Sfax.

    Google Scholar 

  • Chaum S., Batin C.B., Samphumphung T. & Kidmanee C. 2013. Physio-morphological changes of cowpea (‘Vigna unguiculata’ Walp.) and jack bean (‘Canavalia ensiformis’ (L.) in responses to soil salinity. Aust. J. Crop Sci. 7: 2128–2135.

    Google Scholar 

  • Chen H. & Jiang J.G. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environm. Rev. 18: 309–319.

    Google Scholar 

  • Chookhampaeng S. 2011. The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. Euro. J. Sci. Res. 4: 103–109.

    Google Scholar 

  • Corpas F.J. & Barroso J.B. 2013. Nitro-oxidative stress vs oxida-tive or nitrosative stress in higher plants. New Phytol. 199: 633–635.

    Article  CAS  PubMed  Google Scholar 

  • Costa A., Drago I., Behera S., Zottini A. & Pizzo P. 2010. H2O2 in plant peroxisomes, An in vitro analysis uncovers Ca2+ dependant scavenging system. Plant J. 62: 760–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couée I., Sulmon C., Gouesbet G. & El Amrani A. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 57: 449–459.

    Article  CAS  PubMed  Google Scholar 

  • De Gara L., Locato V., Dipierro S. & de Pinto M.C. 2010. Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Res. Physiol. Neurobiol. 173 (Suppl): S 13–19.

    Article  CAS  Google Scholar 

  • Degl’Innocenti E., Hafsi C., Guidi L. & Navari-Izzo F. 2009. The effect of salinity on photosynthetic activity in potassiumdeficient barley species. J. Plant Physiol. 166: 1968–1981.

    Article  PubMed  CAS  Google Scholar 

  • Deinlein U., Stephan A.B., Horie T., Luo W., Xu G. & Schroeder J.I. 2014. Plant salt-tolerance mechanisms. Trends Plant Sci. 19: 371–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R., Cheung M.K., Bright J., Henson D., Hancock J.T. & Neill S.J. 2004. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot. 55: 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Duarte B., Santos D. & Caçador I. 2013. Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker. Fun. Plant Biol. 40: 922–930.

    Article  CAS  Google Scholar 

  • Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A. & Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  • El-Rhaffari L. & Zaid A. 2002. Pratique de la phytothérapie dans le sud-est du Maroc (Tafilalet): Un savoir empirique pour une pharmacopée rénovée. Des sources du savoir aux médicaments du futur. pp. 293–318.

    Chapter  Google Scholar 

  • Foyer C.H. & Noctor G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environm. 28: 1056–1071.

    Article  CAS  Google Scholar 

  • Grant J.J. & Loake G.J. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124: 21–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q., Wang P., Ma Q., Zhang J.L., Bao A.K. & Wang S.M. 2012. Selective transport capacity for K+ over Na+ is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora. Fun. Plant Biol. 39: 1047–1057.

    Article  CAS  Google Scholar 

  • Guzmán-Murillo M.A., Ascencio F. & Larrinaga-Mayoral J.A. 2013. Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. Protoplasma 250: 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Hameed M., Ashraf M. & Naz N. 2009. Anatomical adaptations to salinity in cogon grass (Imperata cylindrica (L.) Raeuschel) from the Salt Range, Pakistan. Plant Soil 322: 229–238.

    Article  CAS  Google Scholar 

  • Hameed M., Ashraf M., Naz N. & Qurainy F.A. 2010. Anatomical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range Pakistan to salinity stress. I. Root and stem anatomy. Pak. J. Bot. 42: 279–289.

    Google Scholar 

  • Hardikar S.A. & Pandey A.N. 2008. Growth, water status and nutrient accumulation of seedling of Acacia senegal (L.) Willd in response to soil salinity. Ann. Biol. 30: 17–28.

    Google Scholar 

  • Hefny M. & Abdel-Kader D.Z. 2009. Antioxidant-enzyme system as selection criteria for salt tolerance in forage sorghum genotypes (Sorghum bicolor L. Moench), pp. 25–36. In: Ashraf M., Ozturk M. & Athar H.R. (eds.), Salinity and Water Stress, Springer, The Netherlands.

    Chapter  Google Scholar 

  • Hoagland D.R. & Arnon D.I. 1950. The water-culture method for growing plants without soil. Circ. 347. Univ. of Calif. Agric. Exp. Station, Berkley.

    Google Scholar 

  • Huang T.I., Reed D.A., Perring T.M. & Palumbo J.C. 2014. Feeding damage by Bagrada hilaris (Hemiptera: Pentatomidae) and impact on growth and chlorophyll content of Brassicaceous plant species. Arthropod-Plant Interact Arthropod-Plant Interactions 8: 89–100.

    Article  Google Scholar 

  • Hussain T., Koyro H.W., Huchzermeyer B. & Khan M.A. 2015. Eco-physiological adaptations of Panicum antidotale to hyperosmotic salinity: Water and ion relations and anti-oxidant feedback. Flora 212: 30–37.

    Article  Google Scholar 

  • Khan F.A., Azhar F.M., Afzal I. & Rauf S. 2007. Effect of nitrogen regimes on combining ability variation in oil and protein contents in cotton seed (Gossypium hirsutum L.). Plant Prod. Sci. 10: 367–371.

    Article  CAS  Google Scholar 

  • Leon-Sanchez L., Nicolas E., Nortes P.A., Maestre F.T. & Quere-jeta J.I. 2016. Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a Mediterranean semi-arid shrub. Ecol. Evol. 6: 2725–2738

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y., Lei J.Q., Zeng F.J., Zhang B., Liu G.J., Liu B. & Li X.Y. 2017. Effect of NaCl-induced changes in growth, photosynthetic characteristics, water status and enzymatic antioxidant system of Calligonum caput-medusae seedlings. Photosynthetica 55: 96–106.

    Article  CAS  Google Scholar 

  • Maassoumi A.A. 1998. Astragalus in the Old World, Check-list. Research Institute of Forests and Rangeland, Tehran.

    Google Scholar 

  • Mane A.V., Karadge B.A. & Samant J.S. 2010. Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon Nardus (L.) Rendle. J. Chem. Pharm. Res. 2: 338–347.

    CAS  Google Scholar 

  • Mansour M.M.F. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43: 491–500.

    Article  CAS  Google Scholar 

  • Martinez J.P., Kinet J.M., Bajji M. & Lutts S. 2005. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J. Exp. Bot. 56: 2421–2431.

    Article  CAS  PubMed  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Moinuddin M., Gulzar S., Ahmed M.Z., Gul B., Koyro H.W. & Khan M.A. 2014. Excreting and non-excreting grasses exhibit different salt resistance strategies. AoB PLANTS 6: plu038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montoro P., Teyeb H., Masulloa M., Maria A., Doukib W. & Piacentea S. 2013. LC-ESI-MS quali-quantitative determination of phenolic constituents in different parts of wild and cultivated Astragalus gombiformis. J Pharm. Biomed. Ana. 72: 89–98.

    Article  CAS  Google Scholar 

  • Morsy M.H. 2003. Growth ability of mango cultivars irrigated with saline water. Acta Hort. 609: 475–482.

    Article  Google Scholar 

  • Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environm. 25: 239–250.

    Article  CAS  Google Scholar 

  • Munns R. & Tester M. 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 59: 651–681.

    Article  CAS  Google Scholar 

  • Munns R., James R.A., Xu B., Athman A., Conn S.J., Jordans C., Byrt C.S., Hare R.A., Tyerman S.D. & Tester M. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnol. 30: 360–364.

    Article  CAS  Google Scholar 

  • Muscolo A., Panuccio M.R. & Eshel A. 2013. Ecophysiology of Pennisetum Clandestinum: a valuable salt tolerant grass. Environm. Exp. Bot. 92: 55–63.

    Article  CAS  Google Scholar 

  • Nakano Y. & Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867–880.

    CAS  Google Scholar 

  • Nawaz T., Hameed M., Ashraf M., Ahmada M.S.A., Batoola R. & Fatima S. 2014. Anatomical and physiological adaptations in aquatic ecotypes of Cyperus alopecuroides Rottb. under saline and waterlogged conditions. Aquatic Bot. 116: 60–68.

    Article  Google Scholar 

  • Naz N., Rafique T., Hameed M., Ashraf M., Batool R. & Fatima S. 2014. Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan. Acta Physiol. Plant. 36: 29–59.

    Article  CAS  Google Scholar 

  • Okuma E., Murakami Y., Shimoishi Y., Tada M. & Murata Y. 2004. Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci. Plant Nut. 50: 1301–1305.

    Article  CAS  Google Scholar 

  • Ola H.A.E., Reham E.F., Eisa S.S. & Habib S.A. 2012. Morpho-anatomical changes in salt stressed kallar grass (Leptochloa fusca L. Kunth). Res. J. Agric. Biol. Sci. 8: 158–166.

    Google Scholar 

  • Ortega L., Fry S.C. & Taleisnik E. 2006. Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone. J. Exp. Bot. 57: 3945–3952.

    Article  CAS  PubMed  Google Scholar 

  • Pagter M., Bragato C., Malagoli M. & Brix H. 2009. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Bot. 90: 43–51.

    Article  CAS  Google Scholar 

  • Parida A.K., Veerabathini S.K., Kumari A. & Agarwal P.K. 2016. Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition Front. Front. Plant Sci. 7: 351

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulavarty A., Kukde S. & Shinde V.M. 2016. Morphological, physiological and biochemical adaptations of Eucalyptus citriodora seedlings under NaCl stress in hydroponic conditions Acta Physiol. Plant. 38: 20. doi:10.1007/s11738-015-2042-1

    Google Scholar 

  • Rasouli F. & Kiani-Pouya A. 2015. Photosynthesis capacity and enzymatic defense system as bioindicators of salt tolerance in triticale genotypes. Flora 214: 34–43.

    Article  Google Scholar 

  • Redondo-Gómez S., Mateos-Naranjo E., Davy A.J., Fernández-Muñoz F., Castellanos E., Luque T. & Figueroa M.E. 2007. Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann. Bot 100: 555–563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rengasamy P., Chittleborough D. & Helyar K. 2003. Root-zone constraints and plant-based solutions for dryland salinity. Plant Soil 257: 249–260.

    Article  CAS  Google Scholar 

  • Rodriguez-Rosales M.P., Kerkeb L., Bueno P. & Donaire J.P. 1999. Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+AT Pa s e an d anti oxidant enzyme activities of tomato (Lycopersicon esculantum Mill.) calli. Plant Sci. 143: 143–150.

    Article  CAS  Google Scholar 

  • Rostami A.A. & Rahemi M. 2013. Screening Drought Tolerance in Caprifig Varieties in Accordance to Responses of Antioxidant Enzymes. World Appl. Sci. J. 21: 1213–1219.

    CAS  Google Scholar 

  • Sairam R.K. & Srivastava G.C. 2002. Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 162: 897–904.

    Article  CAS  Google Scholar 

  • Sairam R.K. & Tyagi A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 6: 407–421.

    Article  Google Scholar 

  • Schaedle M. & Bassham J.A. 1977. Chloroplast glutathione re-ductase. Plant Physiol. 59: 1011–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekmen A.H., Turkan I., Tanyolac Z.O., Ozfidan C. & Dinc A. 2012. Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Environm. Exp. Bot. 77: 63–76.

    Article  CAS  Google Scholar 

  • Sergio L., De Paola A., Cantore V., Pieralice M., Cascarano N.A., Bianco V.V. & Di Venere D. 2012. Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol. Plant. 34: 2349–2358.

    Article  CAS  Google Scholar 

  • Serrano R. & Rodriguez-Navarro A. 2001. Ion homeostasis during salt stress in plants. pp. 399–404. Cell Biology, New York.

    Google Scholar 

  • Shabala L., Mackay A., Tian Y., Jacobsen S.E., Zhou D. & Shabala S. 2012. Oxidativestress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol. Plant. 146: 26–38.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P. & Dubey R.S. 2005. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress, role of osmolytes as enzyme protectant. J. Plant Physiol. 162: 854–64.

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y. & Yoshimura K. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305–1319.

    Article  CAS  PubMed  Google Scholar 

  • Siddique M.R.B., Hamid A. & Aslam M.S. 2000. Drought stress effects on water relations of wheat. Bot. bull. Acad. Sin. 41: 35–39.

    Google Scholar 

  • Singh A.K. & Dubey R.S. 1995. Changes in chlorophyll aand bcontents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl. Photosynthetica 31: 489–499.

    CAS  Google Scholar 

  • Sun J.K., Li T., Xia J.B., Tian J.Y. & Lu Z.H. 2011. Influence of salt stress on ecophysiological parameters of Periploca sepium Bunge. Plant Soil Environm. 57: 139–144.

    Article  CAS  Google Scholar 

  • Syvertsen J.F., Lloyd J., McConchie C., Kriedemann P.E. & Farquhar G.D. 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environm. 18: 149–157.

    Article  Google Scholar 

  • Tabatabaei S. & Ehsanzadeh P. 2016. Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. Photosynthetica 54: 340–350.

    Article  CAS  Google Scholar 

  • Tester M. & Davenport R. 2003. Na+ resistance and Na+ transport in higher plants. Ann. Bot. 91: 503–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasellati V., Oesterheld M., Medan D. & Loreti J. 2001. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Ann. Bot. 88: 355–360.

    Article  Google Scholar 

  • Wang F., Zeng B., Sun Z. & Zhu C. 2009. Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant. Arch. Environ. Contam. Toxicol. 56: 723–31.

    Article  CAS  PubMed  Google Scholar 

  • Wankhade S.D., Cornejo M.J., Mateu-Andre’s I. & Sanz A. 2013. Morpho-physiological variations in response to NaCl stress during vegetative and reproductive development of rice. Acta Physiol. Plant. 35: 323–333.

    Article  CAS  Google Scholar 

  • Wani A.S., Ahmad A., Hayat S. & Fariduddin Q. 2013. Salt-induced modulation in growth, photosynthesis and antioxi-dant system in two varieties of Brassica juncea. Saudi J. Biol. Sci. 20: 183–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yıldıztugay E., Sekmen A., Turkan I. & Kucukoduk M. 2011. Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Plant Physiol. Biochem. 49: 816–824.

    Article  PubMed  CAS  Google Scholar 

  • Xiong L. & Zhu J.K. 2002. Molecular and genetic aspects of plant responses to osmotic 531 stress. Plant Cell Environ. 25: 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Zabala J.M., Taleisnik E., Giavedoni J.A., Pensiero J.F. & Schrauf G.E. 2011. Variability in salt tolerance of native populations of Elymus scabrifolius (Döll) J.H. Hunz from Argentina. Grass For. Sci. 66: 109–122.

    Article  Google Scholar 

  • Zarinkamar F. 2006. Density, size and distribution of stomata in different monocotyledons. Pak. J. Biol. Sci. 9: 1650–1659.

    Article  Google Scholar 

  • Zarre-Mobarakeh S. 2000. Systematic revision of Astragalus sect. Adiaspastus, sect. Macrophyllium and sect. Pterophorus (Fabaceae). Englera 18: 113–114.

    Google Scholar 

  • Zhang H., Wang X. & Wang S. 2004. A study on stomatal traits of Platanus acerifolia under urban stress. J. Fudan Univ. 43: 651–656.

    Google Scholar 

  • Zhu J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayçal Boughalleb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boughalleb, F., Abdellaoui, R., Nbiba, N. et al. Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis. Biologia 72, 1454–1466 (2017). https://doi.org/10.1515/biolog-2017-0169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0169

Key words

Navigation