Skip to main content

Advertisement

Log in

Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Efficient utilization of saline land for food cultivation can increase agricultural productivity and rural income. To obtain information on the salt tolerance/susceptibility of wild chicory (Cichorium intybus L.), the influence of salinity (0–260 mM NaCl) on chicory seed germination and that of two salinity levels of irrigation water (100 and 200 mM NaCl) on plant growth, antioxidative enzyme activity, and accumulation of proline and malondialdehyde (MDA) were investigated. The trials were performed outdoors, in pots placed under a protective glass covering, for two consecutive years. Seeds showed a high capacity to germinate in saline conditions. The use of 100 mM NaCl solution resulted in 81 % germination, whereas seed germinability decreased below 40 % using salt concentrations above 200 mM NaCl. Wild chicory showed tolerance to medium salinity (100 mM NaCl), whereas a drastic reduction in biomass was observed when 200 mM NaCl solution was used for irrigation. MDA, present in higher amounts in leaves than in roots, decreased in both tissues under increasing salinity. Proline content increased remarkably with the level of salt stress, more so in roots than in leaves. In salt stress conditions, the activity of antioxidant enzymes (APX, CAT, POD, SOD) was enhanced. The electrophoretic patterns of the studied enzymes showed that the salinity of irrigation water affected only the intensity of bands, but did not activate new isoforms. Our results suggest that wild chicory is able to grow in soil with moderate salinity by activating antioxidative responses both in roots and leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DM:

Dry matter

ECe :

Soil electrical conductivity (saturated paste extract method)

FM:

Fresh matter

HPLC:

High-performance liquid chromatography

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

PAGE:

Polyacrylamide gel electrophoresis

POD:

Peroxidase

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substances

TCA:

Trichloracetic acid

TEMED:

Tetramethylethylene diamine

References

  • Acevedo A, Paleo AD, Federico ML (2001) Catalase deficiency reduces survival and pleiotropically affects agronomic performance in field-grown barley progeny. Plant Sci 160:847–855

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1974) Catalase, in: Bergmeyer H (ed.) Methods of Enzymatic Analysis. Academic Press, New York 2:673–684

    Google Scholar 

  • Arshi A, Abdin MZ, Iqbal M (2006) Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiol Plant 28:137–147

    Article  CAS  Google Scholar 

  • Arshi A, Ahmad A, Aref IM, Iqbal M (2010) Effect of calcium against salinity-induced inhibition in growth, ion accumulation and proline contents in Cichorium intybus L. J Environ Biol 31:939–944

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bergamo P, Fedele E, Balestrieri M, Abrescia P, Ferrara L (1998) Measurement of malondialdehyde levels in food by high-performance liquid chromatography with fluorometric detection. J Agric Food Chem 46:2171–2176

    Article  CAS  Google Scholar 

  • Beyer W, Fridovich I (1987) Assaying for superoxide dismutase activity; some large consequences of minor changes in condition. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Bianco VV (2009) Wild chicory: folklore, valorization, food, officinal and ornamental use. Ital J Agron Riv Agron 4 (4 Suppl):143–151

    Google Scholar 

  • Bor M, Özdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–253

    Article  CAS  PubMed  Google Scholar 

  • Breusegem FV, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi (ed.), Rome

  • Cucci G, De Caro A, Ciciretti L, Leoni B (1994) Salinity and germination of some vegetable crops. Acta Hortic 362:305–309

    Google Scholar 

  • Davey MW, Stals E, Panis B, Keulemans J, Swennen RL (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347:201–207

    Article  CAS  PubMed  Google Scholar 

  • Di Venere D, Sergio L, Linsalata V, Pieralice M, Cardinali A, Cascarano N, Bianco VV (2009) Antioxidant properties of wild edible herbaceous species. Ital J Agron Riv Agron 4(4 Suppl):635–640

    Google Scholar 

  • Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1566–1570

    Article  CAS  Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143

    Article  CAS  PubMed  Google Scholar 

  • Eraslan F, Inal A, Savasturk O, Gunes A (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hort 114:5–10

    Article  CAS  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Gossett DR, Banks SW, Millhollon EP, Lucas MC (1996) Antioxidant responses to NaCl stress in a control and NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine and exogenous glutathione. Plant Physiol 112:803–809

    PubMed Central  PubMed  Google Scholar 

  • Grassmann J, Hippeli S, Elstner EF (2002) Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol Biochem 40:471–478

    Article  CAS  Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock Proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa PH, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Heimler D, Isolani L, Vignolini P, Romani A (2009) Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chem 114:765–770

    Article  CAS  Google Scholar 

  • Jin X, Huang Y, Zeng F, Zhou M, Zhang G (2009) Genotypic difference in response of peroxidase and superoxide dismutase isozymes and activities to salt stress in barley. Acta Physiol Plant 31:1103–1109

    Article  CAS  Google Scholar 

  • Katsuhara M, Otsuka T, Ezaki B (2005) Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci 169:369–373

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao Sreenath Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kim DS, Lee IS, Jang CS, Kang SY, Park IS, Song HS, Seo YW (2005) High amino acid accumulating 5-methyltryptophan-resistant rice mutants may include an increased antioxidative response system. Physiol Plant 123:302–313

    Article  CAS  Google Scholar 

  • Koca H, Bor M, Özdemir F, Türkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the hand of bacteriophage. Nature 22:680–685

    Article  Google Scholar 

  • Lebeda A, Dolezal K (1995) Peroxidase isozyme polymorphism as a potential marker for detection of field resistance in Cucumis sativus to cucumber downy mildew, Pseudoperonospora cubensis Berk. et Curt. Rostov. J Plant Dis Prot 102(5):467–471

    Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160(10):1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Magné C, Larher F (1992) High sugar content of extracts interferes with colorimetric determination of amino acids and free proline. Anal Biochem 200:115–118

    Article  PubMed  Google Scholar 

  • Meloni DA, Olive MA, Martinaze CA, Cambaia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Miszalski Z, Slesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress response of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant, Cell Environ 21:169–179

    Article  CAS  Google Scholar 

  • Mittler R, Zilinskas B (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces upregulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Möller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Muckenschnabel I, Goodman BA, Williamson B, Lyon GD, Deighton N (2002) Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products. J Exp Bot 53:207–214

    Article  CAS  PubMed  Google Scholar 

  • Neel JPS, Alloush GA, Belesky DP, Clapham WM (2002) Influence of rhizosphere ionic strength on mineral composition, dry matter yield and nutritive value of forage chicory. J Agron Crop Sci 188:398–407

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Ruiz JM, Blasco B, Rivero RM, Romero L (2005) Nicotine-free and salt tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiol Plant 124:465–475

    Article  CAS  Google Scholar 

  • Sehmer L, Alaoui-Sosse B, Dizengremel P (1995) Effect of salt stress on growth and on the detoxifying pathway of peduncolate oak seedlings (Quercus robur L.). J Plant Physiol 147:144–151

    Article  CAS  Google Scholar 

  • Sun Y, Elwell JH, Oberley LW (1988) A simultaneous visualization of the antioxidant enzymes glutathione peroxidase and catalase on polyacrylamide gel. Free Radic Res Commun 5:67–75

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama K, Stahmann MA (1964) Alteration of oxidative enzymes in potato tuber tissue by infection with Phytophtora infestans. Plant Physiol 39:483–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Zushi K, Matsuzoe N (2009) Seasonal and cultivar differences in salt-induced changes in antioxidant system in tomato. Sci Hortic 120:181–187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the present work was made within the PhD thesis in “Agronomia Mediterranea” carried out by Dr. Angela De Paola, who was supported by an education grant from Apulia Region, within the programme: “POR Puglia—FSE 2007/2013—Obiettivo 1 Convergenza, Asse IV—Capitale Umano”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Di Venere.

Additional information

Communicated by S. Weidner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergio, L., De Paola, A., Cantore, V. et al. Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol Plant 34, 2349–2358 (2012). https://doi.org/10.1007/s11738-012-1038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1038-3

Keywords

Navigation