Skip to main content
Log in

Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To examine anatomical adaptations in a potential forage grass, Imperata cylindrica (L.) Raeuschel, a population was collected from the natural salt-affected soils of the Salt Range, Pakistan. Using a hydroponic system, the degree of salt tolerance in terms of structural modifications in the Salt Range ecotype was compared with that in an ecotype collected from a normal non-saline habitat of the Faisalabad region. The Salt Range ecotype was superior to the Faisalabad ecotype in biomass production under saline conditions. High salt tolerance of the Salt Range ecotype was associated with increased succulence in root and leaf (mainly midrib), formation of aerenchyma in leaf sheath, increased vascular bundle area, metaxylem area and phloem area, highly developed bulliform cells on leaves and increased sclerification in root and leaf. Furthermore, both stomatal density and stomatal area were considerably reduced under high salinities in the Salt Range ecotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abernethy GA, Fountain DW, Mcmanus MT (1998) Observations on the leaf anatomy of Festuca novae-zelandiae and biochemical responses to a water deficit. N Z J Bot 36:113–123

    Google Scholar 

  • Akhtar J, Gorham J, Qureshi RH et al (1998) Does tolerance of wheat to salinity and hypoxia correlate with root dehydrogenase activities or aerenchyma formation? Plant Soil 201:275–284. doi:10.1023/A:1004333318973

    Article  CAS  Google Scholar 

  • Akram M, Akhtar S, Javed IH et al (2002) Anatomical attributes of different wheat (Triticum aestivum) accessions/varieties to NaCl salinity. Int J Agric Biol 4:166–168

    Google Scholar 

  • Alvarez JM, Rocha JF, Machado SR (2008) Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function. Braz Arch Biol Technol 51:113–119. doi:10.1590/S1516-89132008000100014

    Article  Google Scholar 

  • Anton AM (1986) Contribucion al conocimiento de la anatomia foliar del genero Axonopus (Poaceae). Darwiniana 27:157–158

    Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Google Scholar 

  • Baloch AH, Gates PJ, Baloch GM (1998) Anatomical changes brought about by salinity in stem, leaf and root of Arabidopsis thaliana (L.) Heynh (thale cress). Sarhad J Agric 14:131–142

    Google Scholar 

  • Balsamo RA, Willigen CV, Bauer AM, Farrant J (2006) Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann Bot (Lond) 97:985–991. doi:10.1093/aob/mcl068

    Article  CAS  Google Scholar 

  • Barrett-Lennard EG (2003) The interaction between waterloggingand salinity in higher plants: causes, consequences and implications.Plant Soil 253:35–54

    Article  CAS  Google Scholar 

  • Baumeister W, Merten A (1981) Growth and root anatomy of two subspecies of Festuca rubra in response to sodium chloride salinization of the culture solution. Angew Bot 55:401–408

    Google Scholar 

  • Bell HL, O’Leary JW (2003) Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae). Am J Bot 90:1416–1424. doi:10.3732/ajb.90.10.1416

    Article  Google Scholar 

  • Bray S, Reid DM (2002) The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris. Can J Bot 80:349–359. doi:10.1139/b02-018

    Article  Google Scholar 

  • Cachorro P, Ortiz A, Ros Barceló A, Cerdá A (1993) Lignin deposition in vascular tissues of Phaseolus vulgaris roots in response to salt stress and Ca2+ ions. Phyton 33:33–40

    CAS  Google Scholar 

  • Chaudhry AA, Hameed M, Ahamd R et al (2001) Phyto-Sociologocal Studies in Chhumbi Surla Wildlife Sanctuary, Chakwal, Pakistan. I. Species diversity. Int J Agric Biol 3:363–368

    Google Scholar 

  • Cheng KT, Chou CH (1997) Ecotypic variation of Imperata cylindrica populations in Taiwan: I. Morphological and molecular evidences. Bot Bull Acad Sinica (Taiwan) 38:215–223

    Google Scholar 

  • Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974. doi:10.1111/j.1469-8137.2008.02483.x

    Article  PubMed  CAS  Google Scholar 

  • Curtis PS, Läuchli A (1987) The effect of moderate salt stress on leaf anatomy in Hibiscus cannabinus (kenaf) and its relation to leaf area. Am J Bot 74:538–542. doi:10.2307/2443833

    Article  CAS  Google Scholar 

  • El-Araby MM, Hegazi AZ (1999) Growth responses and hormonal changes of kidney beans at different levels of soil salinization. J Union Arab Biol Cairo 7(B) Physiology & Algae 1999:327–343

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963. doi:10.1111/j.1469-8137.2008.02531.x

    Article  PubMed  CAS  Google Scholar 

  • Gielwanowska I, Szczuka E, Bednara J et al (2005) Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann Bot (Lond) 96:1109–1119. doi:10.1093/aob/mci262

    Article  Google Scholar 

  • Gill KS, Dutt SK (1982) Effect of salinity on stomatal number, size and opening in barley genotypes. Biol Plant 24:266–269. doi:10.1007/BF02879457

    Article  Google Scholar 

  • González LM, López RC, Fonseca I et al (2000) Growth, stomatal frequency, DM yield and accumulation of ions in nine species of grassland legumes grown under saline conditions. Pastos Forrajes 23:299–308

    Google Scholar 

  • Grigore MN, Toma C (2007) Histo-anatomical strategies of Chenopodiaceae halophytes: Adaptive, ecological and evolutionary implications. WSEAS Trans Biol Biomed 4:204–218

    Google Scholar 

  • Hajibagher MA, Hall JL, Flowers TJ (1983) The structure of the cuticle in relation to cuticular transpiration in leaves of the halophyte Suaeda maritima (L.) Dum. New Phytol 94:125–131. doi:10.1111/j.1469-8137.1983.tb02728.x

    Article  Google Scholar 

  • Hajibagher MA, Hall JL, Flowers TJ (1984) Stereological analysis of leaf cells of the halophyte Suaeda maritima (L.) Dum. J Exp Bot 35:1547–1557. doi:10.1093/jxb/35.10.1547

    Article  Google Scholar 

  • Hoagland DR, Amon DI (1950) The water culture method for growing plants without soil. In: Circular No. 347, Univ Calif Agric Exp Stn, Berkeley, CA, pp 1–39

  • Hu Y, Fromm J, Schmidhalter U (2005) Effect of salinity on tissue architecture in expanding wheat leaves. Planta 220: 838–848

    Article  PubMed  CAS  Google Scholar 

  • Hwang YH, Chen SC (1995) Anatomical responses in Kandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl. Bot Bull Acad Sin 36:181–188

    CAS  Google Scholar 

  • Jenks MA, Ashworth EN (1999) Plant epicuticular waxes: Function, production, and genetics. In: Janick J (ed) Horticultural reviews, vol 23. Wiley, New York, pp 1–68

    Google Scholar 

  • Kemp PR, Cunningham GL (1981) Light, temperature and salinity effects on growth, leaf anatomy and photosynthesis of Distichlis spicata (L.) Greene. Am J Bot 68:507–516. doi:10.2307/2443026

    Article  Google Scholar 

  • Marcum KB, Anderson SJ, Engelke MC (1998) Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Sci 38:806–810

    Article  Google Scholar 

  • Matumura M, Nakajima N (1988) Comparative ecology of intraspecific variants of the Chigaya, Imperata cylindrica var. koenigii (Alang-alang). III. Annual growth of the 3rd year communities originated from the seedlings. J Jpn Soc Grassl Sci 34:77–84

    Google Scholar 

  • McKerrow WS, Scotese CR, Brasier MD (1992) Early Cambrian continental reconstructions. J Geol Soc 149:599–606. doi:10.1144/gsjgs.149.4.0599

    Article  Google Scholar 

  • MSTAT Development Team (1989) MSTAT user’s guide: a microcomputer program for the design management and analysis of agronomic research experiments. Michigan State University, East Lansing, MI

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Husain S, Rivelli AR et al (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105. doi:10.1023/A:1021119414799

    Article  CAS  Google Scholar 

  • Omer L St, Schlesinger WH (1980) Field and greenhouse investigations of the effect of increasing salt stress on the anatomy of Jaumea carnosa (Asteraceae), a salt marsh species. Am J Bot 67:1455–1465. doi:10.2307/2442874

    Article  Google Scholar 

  • Pearson J, Havill DC (1988) The effect of hypoxia and sulphide on culture-grown wetland and non-wetland plants I: growth and nutrient uptake. J Exp Bot 39:363–374

    Article  CAS  Google Scholar 

  • Qadir M, Noble AD, Oster JD et al (2005) Driving forces for sodium removal during phytoremediation of calcareous sodic soils. Soil Use Manage 21:173–180. doi:10.1079/SUM2005312

    Article  Google Scholar 

  • Reinhardt DH, Rost TL (1995) Developmental changes of cotton root primary tissues induced by salinity. Int J Plant Sci 156:505–513. doi:10.1086/297273

    Article  Google Scholar 

  • Reinoso H, Sosa L, Ramírez L et al (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628. doi:10.1139/b04-040

    Article  Google Scholar 

  • Ristic Z, Jenks MA (2002) Leaf cuticle and water loss in maize lines differing in dehydration avoidance. J Plant Physiol 159:645–651. doi:10.1078/0176-1617-0743

    Article  CAS  Google Scholar 

  • Santoso D, Adiningsih S, Mutert E et al (1997) Soil fertility management for reclamation of Imperatai grasslands by smallholder agroforestry. Agrofor Syst 36:181–202. doi:10.1007/BF00142873

    Article  Google Scholar 

  • Steel RGD, Torrie JH, Dickie DA (1997) Principles and procedures of statistics-a biometric approach, 3rd edn. McGraw-Hill, Toronto

    Google Scholar 

  • USDA Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. US Government Printing Office, Washington, DC

    Google Scholar 

  • Vijayan K, Chakraborti SP, Ercisli S, Ghosh PD (2008) NaCl induced morpho-biochemical and anatomical changes in mulberry (Morus spp.). Plant Growth Regul 56:61–69

    Article  CAS  Google Scholar 

  • Walsh GE (1990) Anatomy of the seed and seedling of Spartina alterniflora Lois. (Poaceae). Aquat Bot 38:177–193. doi:10.1016/0304-3770(90)90004-5

    Article  Google Scholar 

  • YuJing Z, Yong Z, ZiZhi H et al (2000) Studies on microscopic structure of Puccinellia tenuiflora stem under salinity stress. Grassl China 5:6–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Hameed.

Additional information

Responsible Editor: Timothy J. Flowers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hameed, M., Ashraf, M. & Naz, N. Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322, 229–238 (2009). https://doi.org/10.1007/s11104-009-9911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9911-6

Keywords

Navigation