Mujica A, Jacobsen S-E. La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. In: Moraes RM, Øllgaard B, Kvist LP, Borchsenius F, Balslev H, editors. Botánica Económica de los Andes Centrales. La Paz: Universidad Mayor de San Andrés; 2007. p. 449–57.
Google Scholar
Gómez L, Aguilar E. Guía del Cultivo de Quinua. Second. Lima: Universidad Nacional Agraria La Molina; 2016. http://www.fao.org/documents/card/es/c/3a12f679-22a1-46a0-a91e-6853ca5bb5dd/.
Google Scholar
Gandarillas A, Rojas W, Bonifacio A, Ojeda N. Quinoa in Bolivia: The PROINPA Foundation’s Perspective. In: Bazile D, Bertero D, Nieto C, editors. State of the art report on quinoa around the world in 2013. Rome: FAO regional office for Latin America; the Caribbean; 2015. p. 344–61. http://www.fao.org/3/a-i4042e.pdf.
Google Scholar
Zurita- A, Fuentes F, Zamora P, Jacobsen S-E, Schwember AR. Breeding quinoa (Chenopodium quinoa Willd.): Potential and perspectives. Mol Breed. 2014;34:13–30.
Article
Google Scholar
Bazile D, Bertero D, Nieto C. State of the art report on quinoa around the world in 2013: FAO; CIRAD; 2015. http://www.fao.org/3/a-i4042e.pdf.
Bazile D, Pulvento C, Verniau A, Al-Nusairi MS, Ba D, Breidy J, et al. Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Front Plant Sci. 2016;7:1–8.
Google Scholar
Murphy KM, Matanguihan JB, Fuentes FF, Gómez-Pando LR, Jellen EN, Maughan PJ, et al. Quinoa breeding and genomics. In: Goldman I, editor. Plant Breeding Reviews. Hoboken: John Wiley & Sons, Inc.; 2018. p. 257–320.
Chapter
Google Scholar
Choi Y-J, Danielsen S, Lübeck M, Hong S-B, Delhey R, Shin H-D. Morphological and molecular characterization of the causal agent of downy mildew on quinoa (Chenopodium quinoa). Mycopathologia. 2010;169:403–12.
CAS
PubMed
Article
Google Scholar
Danielsen S, Munk L. Evaluation of disease assessment methods in quinoa for their ability to predict yield loss caused by downy mildew. Crop Prot. 2004;23:219–28.
Article
Google Scholar
Danielsen S, Jacobsen S-E, Hockenhull J. First Report of Downy Mildew of Quinoa Caused by Peronospora farinosa f.sp. Chenopodii in Denmark. Plant Dis. 2002;86:1175.
CAS
PubMed
Article
Google Scholar
Testen AL, McKemy JM, Backman PA. First report of quinoa downy mildew caused by Peronospora variabilis in the United States. Plant Dis. 2012;96:146.
CAS
PubMed
Article
Google Scholar
Choi YJ, Choi IY, Kim JS, Shin HD. First report of quinoa downy mildew caused by Peronospora variabilis in Republic of Korea. Plant Dis. 2014;98:1003.
CAS
PubMed
Article
Google Scholar
Khalifa W, Thabet M. Variation in downy mildew (Peronospora variabilis Gäum) resistance of some quinoa (Chenopodium quinoa Willd) cultivars under Egyptian conditions. Middle East J Agric Res. 2018;7:671–82.
Google Scholar
Danielsen S, Lübeck M. Universally primed-PCR indicates geographical variation of Peronospora farinosa ex. Chenopodium quinoa J Basic Microbiol. 2010;50:104–9.
CAS
PubMed
Article
Google Scholar
Kara M, Soylu EM, Uysal A, Kurt S, Choi Y-J, Soylu S. Morphological and molecular characterization of downy mildew disease caused by Peronospora variabilis on Chenopodium album in Turkey. Aust Plant Dis Notes. 2020;15:10. https://doi.org/10.1007/s13314-020-0381-2.
Article
Google Scholar
Thines M, Choi Y-J. Evolution, diversity, and taxonomy of the peronosporaceae, with focus on the genus peronospora. Phytopathology®. 2016;106:6–18. https://doi.org/10.1094/PHYTO-05-15-0127-RVW.
Article
Google Scholar
Verma S. C. and Chauhan, L. S. and Mathur, R. S. Peronospora farinosa (Fr.) Fr. On Chenopodium murale L.-a new record for India. Curr Sci. 1964;33:720–1.
Google Scholar
Aragón L, Gutiérrez W. Downy mildew on four Chenopodium species. Fitopatología. 1992;27:104–9.
Google Scholar
Baiswar P, Chandra S, Kumar R, Ngachan SV. Peronospora variabilis on Chenopodium murale in India. Aust Plant Dis Notes. 2010;5:45–7.
Article
Google Scholar
Testen AL, Del M J-GM, Ochoa JB, Backman PA. Molecular detection of Peronospora variabilis in quinoa seed and phylogeny of the quinoa downy mildew pathogen in South America and the United States. Phytopathology. 2014;104:379–86.
CAS
PubMed
Article
Google Scholar
Ochoa J, Frinking HD, Jacobs T. Postulation of virulence groups and resistance factors in the quinoa/downy mildew pathosystem using material from Ecuador. Plant Pathol. 1999;48:425–30.
Article
Google Scholar
Bonifacio A. Chenopodium sp.: Genetic resources, ethnobotany, and geographic distribution. Food Rev Int. 2003;19:1–7. https://doi.org/10.1081/FRI-120018863.
Benlhabib O, Boujartani N, Maughan PJ, Jacobsen SE, Jellen EN. Elevated genetic diversity in an F2:6 population of quinoa (Chenopodium quinoa) developed through an inter-ecotype cross. Front Plant Sci. 2016;7:1–9.
Article
Google Scholar
Kitz L. Evaluation of Downy Mildew (Peronospora farinosa f.sp. Chenopodii) Resistance among Quinoa Genotypes and Investigation of P. farinosa Growth using Scanning Electron Microscopy. Thesis: Brigham Young University; 2008. https://scholarsarchive.byu.edu/etd/1512.
Google Scholar
Jacobsen S-E. The Worldwide Potential for Quinoa (Chenopodium quinoa Willd.). Food Rev Int. 2003;19:167–77.
Article
Google Scholar
Tenorio R, Terrazas E, Alvarez MT, Vila JL, Mollinedo P. Concentrados de saponina de Chenopodium quinoa y de Caiphora andina: Alternativas como biocontroladores de hongos fitopatógenos. Rev Boliviana Quím. 2010;27:33–40.
CAS
Google Scholar
Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ. 2018;6:1–32.
Google Scholar
Milligan GW. The use of the arc-sine transformation in the analysis of variance. Educ Psychol Meas. 1987;47:563–73.
Article
Google Scholar
O’Hara RB, Kotze DJ. Do not log-transform count data. Methods Ecol Evol. 2010;1:118–22.
Article
Google Scholar
Warton DI, Hui FKC. The arcsine is asinine: the analysis of proportions in ecology. Ecology. 2011;92:3–10.
PubMed
Article
Google Scholar
Zimmerman DW. Two separate effects of variance heterogeneity on the validity and power of significance tests of location. Stat Methodol. 2006;3:351–74.
Article
Google Scholar
Jacqmin-Gadda H, Sibillot S, Proust C, Molina J-M, Thiébaut R. Robustness of the linear mixed model to misspecied error distribution. Comput Stat Data Anal. 2007;51:5142–54.
Article
Google Scholar
Piepho H-P, Möhring J. Computing heritability and selection response from unbalanced plant breeding trials. Genetics. 2007;177:1881–8.
PubMed
PubMed Central
Article
Google Scholar
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009;24:127–35.
PubMed
Article
Google Scholar
Bertero HD, La Vega AJ, Correa G, Jacobsen SE, Mujica A. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crop Res. 2004;89:299–318.
Article
Google Scholar
Hayward MD, Romagosa I, Bosemark NO, Cerezo M. In: Hayward M, Bosemark NO, Romagosa I, editors. Plant breeding: Principles and Prospects: Springer Netherlands; 1993.
Singh P, Bhatia D. Incomplete block designs for plant breeding experiments. Agric Res J. 2017;54:607.
Article
Google Scholar
Sacristán S, García-arenal F. The evolution of virulence and pathogenicity in plant pathogen populations. Mol Plant Pathol. 2008;9:369–84.
PubMed
PubMed Central
Article
Google Scholar
Barrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J. Continua of specificity and virulence in plant host–pathogen interactions: causes and consequences. New Phytol. 2009;183:513–29.
PubMed
Article
Google Scholar
Mhada M, Ezzahiri B, Benlhabib O. Assessment of downy mildew resistance (Peronospora farinosa) in a quinoa (Chenopodium quinoa Willd.) germplasm. Int J Biol Med Res. 2015;6:4748–52.
Google Scholar
Pitrat M, editor. Cucurbitaceae 2008: proceedings of the IXth EUCARPIA meeting on genetics and breeding of cucurbitaceae, 21–24 may 2008, Avignon, France. Avignon: INRA; 2008.
Google Scholar
Divilov K, Barba P, Cadle-Davidson L, Reisch BI. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet. 2018;131:1133–43.
PubMed
PubMed Central
Article
Google Scholar
Lohithaswa HC, Jyothi K, Sunil Kumar KR, Puttaramanaik HS. Identification and introgression of QTLs implicated in resistance to sorghum downy mildew (Peronosclerospora sorghi (Weston and Uppal) C. G. Shaw) in maize through marker-assisted selection. J Genet. 2015;94:741–8.
CAS
PubMed
Article
Google Scholar
Gardner KM, Latta RG. Heritable variation and genetic correlation of quantitative traits within and between ecotypes of Avena barbata. J Evol Biol. 2008;21:737–48.
CAS
PubMed
Article
Google Scholar
Santis G, D’Ambrosio T, Rinaldi M, Rascio A. Heritabilities of morphological and quality traits and interrelationships with yield in quinoa (Chenopodium quinoa Willd.) genotypes in the Mediterranean environment. J Cereal Sci. 2016;70:177–85. https://doi.org/10.1016/j.jcs.2016.06.003.
Article
Google Scholar
Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujica A. La quinua y la kañiwa: Cultivos Andinos. Bogotá: Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agricolas (IICA); 1979.
Google Scholar
Danielsen S, Bonifacio A, Ames T. Diseases of quinoa (Chenopodium quinoa). Food Rev Int. 2003;19:43–59.
Article
Google Scholar
Danielsen S, Ames T. El mildiu (peronospora farinosa) de la quinua (Chenopodium quinoa) en la zona andina: Manual practico para el estudio de la enfermedad y el patogeno. Lima: Centro Internacional de la Papa (CIP); 2000. http://cipotato.org/wp-content/uploads/2014/10/AN60198.pdf.
Google Scholar
Gabriel J, Luna N, Vargas A, Magne J, Angulo A, La Torre J, et al. Quinua de valle (Chenopodium quinoa Willd.): Fuente valiosa de resistencia genética al mildiu (Peronospora farinosa Willd.). J Selva Andina Res Soc. 2012;3:27–44.
Google Scholar
Al-Naggar A, El-Salam R, Badran A, El-Moghazi M. Heritability and Interrelationships for Agronomic, Physiological and Yield Traits of Quinoa (Chenopodium quinoa Willd.) under Elevated Water Stress. Arch Curr Res Int. 2017;10:1–5.
Article
Google Scholar
Rollano-Peñaloza OM, Palma-Encinas V, Widell S, Rasmusson AG, Mollinedo P. The disease progression and molecular defense response in Chenopodium quinoa infected with peronospora variabilis, the causal agent of quinoa downy mildew. bioRxiv. 2019. https://doi.org/10.1101/607465.
Bonifacio A. Quinoa breeding and modern variety development. In: Bazile D, Bertero D, Nieto C, editors. State of the art report on quinoa around the world in 2013. Rome: FAO regional office for Latin America; the Caribbean; 2015. p. 454–65.
Google Scholar
Lange OL, Lösch R, Schulze ED, Kappen L. Responses of stomata to changes in humidity. Planta. 1971;100:76–86.
CAS
PubMed
Article
Google Scholar
Danielsen S, Mercado VH, Ames T, Munk L. Seed transmission of downy mildew (peronospora farinosa f.sp. Chenopodii) in quinoa and effect of relative humidity on seedling infection. Seed Sci Technol. 2004;32:91–8.
Article
Google Scholar
Solíz-Guerrero JB, De Rodriguez DJ, Rodríguez-García R, Angulo-Sánchez JL, Méndez-Padilla G. Quinoa saponins: Concentration and composition analysis. In: Janick J, Whipkey A, others, editors. Trends in new crops and new uses. Alexandria: ASHS Press; 2002. p. 110–114.
Martínez EA, Veas E, Jorquera C, San Martín R, Jara P. Re-introduction of quínoa into arid Chile: cultivation of two lowland races under extremely low irrigation. J Agron Crop Sci. 2009;195:1–10.
Article
Google Scholar
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gandarillas A, Saravia R, Plata G, Quispe R, Ortíz-Romero R. Principal Quinoa Pests and Diseases. In: Bazile D, Bertero D, Nieto C, editors. State of the art report on quinoa around the world in 2013: Rome, FAO regional office for Latin America; the Caribbean; 2015. p. 192–215. http://www.fao.org/3/a-i4042e.pdf.
Kumar A, Bhargava A, Shukla S, Singh HB, Ohri D. Screening of exotic Chenopodium quinoa accessions for downy mildew resistance under mid-eastern conditions of India. Crop Prot. 2006;25:879–89.
Article
Google Scholar
McElhinny E, Mazón N, Rivera MM, Peralta IE. Líneas promisorias de quinua con resistencia cuantitativa al mildiu en Ecuador. In: Danial DL, editor. Agro-biodiversidad y producción de semilla con el sector informal a través del mejoramiento participativo en la Zona Andina. PREDUZA; 2003: p. 40–47.
Curti RN, La Vega AJ, Andrade AJ, Bramardi SJ, Bertero HD. Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crop Res. 2014;166:46–57.
Article
Google Scholar
Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 2009;14:21–9.
CAS
PubMed
Article
Google Scholar
Mastebroek HD, Loo R v. Breeding of quinoa—state of the art. In: Parente G, Frame J, editors. Abstracts/proceedings of COST 814 conference, crop development for cool and wet regions of europe. Offce of Offcial Publications of the European Communities; 2000. p. 491–6.
Google Scholar
Calixtro M, Gómez-Pando L, Ibañez M. Evaluación de la resistencia de quinua al mildiú (Peronospora variabilis) y su transferencia por semillas en condiciones del valle del mantaro, junín—perú. In: Resúmenes de exposiciones del VI congreso mundial de la quinua y III simposio internacional de granos andinos, Perú 2017; 2017. p. 29.
Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16:524–31.
CAS
PubMed
Article
Google Scholar
Sperschneider J. Machine learning in plant–pathogen interactions: empowering biological predictions from field scale to genome scale. New Phytol. 2019;228:35.
Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, et al. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa willd.) as an ingredient in bread formulations. J Cereal Sci. 2012;55:132–8. https://doi.org/10.1016/j.jcs.2011.10.010.
Sun Y, Liu F, Bendevis M, Shabala S, Jacobsen S-E. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. J Agron Crop Sci. 2014;200:12–23. https://doi.org/10.1111/jac.12042.
Lewis CM, Persoons A, Bebber DP, Kigathi RN, Maintz J, Findlay K, et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun Biol. 2018;1. https://doi.org/10.1038/s42003-018-0013-y.
Silva M, Rijo L, Rodrigues C Jr. Differences in aggressiveness of two isolates of race III of Hemileia vastatrix on cultivar caturra of Coffea arabica. In: Proceedings of the 11th international scientific colloquium on coffee. Lomé: ASIC; 1985. p. 635–44.
Scarpeci TE, Zanor MI, Valle EM. Estimation of Stomatal aperture in Arabidopsis thaliana using silicone rubber imprints. Bio Protoc. 2017;7:e2347.
Article
Google Scholar
Fetter KC, Eberhardt S, Barclay RS, Wing S, Keller SR. StomataCounter: a neural network for automatic stomata identification and counting. New Phytol. 2019;223:1671–81.
PubMed
Article
Google Scholar
Butler DG, Cullis BR, Gilmour AR, Gogel BJ. ASReml-R reference manual (version 3). Brisbane, Qld: The State of Queensland, Department of Primary Industries and Fisheries; 2009.
Google Scholar
Piepho HP, Buchse A, Emrich K. A Hitchhiker’s guide to mixed models for randomized experiments. J Agron Crop Sci. 2003;189:310–22.
Article
Google Scholar
Utz HF. PLABSTAT: a computer program for statistical analysis of plant breeding experiments. Stuttgart: Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim; 2001.
Google Scholar
Bernal-Vasquez A-M, Utz H-F, Piepho H-P. Outlier detection methods for generalized lattices: a case study on the transition from ANOVA to REML. Theor Appl Genet. 2016;129:787–804.
Article
Google Scholar
Isik F, Holland J, Maltecca C. Chapter 3: variance modeling in ASReml. In: Genetic data analysis for plant and animal breeding. Cham: Springer; 2017. p. 87–106.
Chapter
Google Scholar
Stroup WW. Generalized linear mixed models: modern concepts, methods and applications. Boca Raton: CRC Press; 2013.
Google Scholar
Brien C. asremlPlus:: Augments the use of ASReml-R in fitting mixed models; 2019.
Google Scholar
Piepho HP, Williams ER, Fleck M. A note on the analysis of designed experiments with complex treatment structure. HortScience. 2006;41:446–52.
Article
Google Scholar
Harrel FE, Dupont C. Hmisc: Harrel Miscelaneous; 2019.
Google Scholar
Koziol MJ. Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). J Sci Food Agric. 1991;54:211–9.
CAS
Article
Google Scholar
Baym SAL Michael AND Kryazhimskiy Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes PLoS One 2015;10:1–5. doi:https://doi.org/10.1371/journal.pone.0128036.
CAS
Article
Google Scholar
Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2.
PubMed
Article
CAS
Google Scholar
Krueger F. Trim galore! 2015. https://github.com/FelixKrueger/TrimGalore.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
PubMed
PubMed Central
Article
CAS
Google Scholar
Broad Institute. Picard tools. Broad institute, GitHub repository Accessed: 2018/02/21; version 2.17.8. http://broadinstitute.github.io/picard/.
Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, et al. The genome of Chenopodium quinoa. Nature. 2017;542:307.
CAS
PubMed
Article
Google Scholar
Maughan PJ, Chaney L, Lightfoot DJ, Cox BJ, Tester M, Jellen EN, et al. Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa willd.). Sci Rep. 2019;9:1–1.
Li H, Durbin R. Fast and accurate long-read alignment with burrows–wheeler transform. Bioinformatics. 2010;26:589–95. https://doi.org/10.1093/bioinformatics/btp698.
CAS
Article
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
CAS
PubMed
PubMed Central
Article
Google Scholar
Money D, Migicovsky Z, Gardner K, Myles S. LinkImputeR: user-guided genotype calling and imputation for non-model organisms. BMC Genomics. 2017;18:523.
PubMed
PubMed Central
Article
Google Scholar
Maruki T, Lynch M. Genotype-frequency estimation from high-throughput sequencing data. Genetics. 2015;201:473–86.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang C, Dong S-S, Xu J-Y, He W-M, Yang T-L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics. 2018;35:1786–8.
Article
CAS
Google Scholar
Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12:1–24.
Google Scholar
Malik PL, Janss L, Nielsen LK, Borum F, Jørgensen H, Eriksen B, et al. Breeding for dual-purpose wheat varieties using marker–trait associations for biomass yield and quality traits. Theor Appl Genet. 2019;132:3375–98.
CAS
PubMed
Article
Google Scholar
Voichek Y, Weigel D. Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nat Genet. 2020;52:534–40.
CAS
PubMed
Article
Google Scholar
Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. Efficient control of population structure in model organism association mapping. Genetics. 2008;178:1709–23.
PubMed
PubMed Central
Article
Google Scholar