Skip to main content
Log in

Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Quinoa (Chenopodium quinoa Willd.) originated in the Andean region of South America; this species is associated with exceptional grain nutritional quality and is highly valued for its ability to tolerate abiotic stresses. However, its introduction outside the Andes has yet to take off on a large scale. In the Andes, quinoa has until recently been marginally grown by small-scale Andean farmers, leading to minor interest in the crop from urban consumers and the industry. Quinoa breeding programs were not initiated until the 1960s in the Andes, and elsewhere from the 1970s onwards. New molecular tools available for the existing quinoa breeding programs, which are critically examined in this review, will enable us to tackle the limitations of allotetraploidy and genetic specificities. The recent progress, together with the declaration of “The International Year of the Quinoa” by the Food and Agriculture Organization of the United Nations, anticipates a bright future for this ancient species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BAC:

Bacterial artificial chromosome

EST:

Expressed sequence tag

FAO:

Food and Agriculture Organization of the United Nations

GA:

Gibberellic acid

IYQ2013:

The International Year of the Quinoa

MAS:

Marker-assisted selection

NOR:

Nucleolus organizer region

NTS:

Non-transcribed spacers

PROINPA:

Fundación para la Promoción e Investigación de Productos Andinos

QTL:

Quantitative trait loci

RAPD:

Random amplified polymorphic DNA

RIL:

Recombinant inbred line

SRA:

Sequence read archive

SSR:

Simple sequence repeat

SNP:

Single nucleotide polymorphism

References

  • Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen S-E (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357(1–2):117–129

    CAS  Google Scholar 

  • Adolf VI, Jacobsen S-E, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54

    CAS  Google Scholar 

  • Aellen P, Just T (1929) Key and synopsis of the American species of the genus Chenopodium L. Am Midland Nat 30:47–67

    Google Scholar 

  • Alandia S, Otazu V, Salas B (1979) Enfermedades. In: Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujica A, Ortiz R, Otazu V, Rea J, Salas B, Sanabria E (eds) Quinua y Kaiñwa. Editorial IICA, Bogotá, pp 137–148

    Google Scholar 

  • Anabalón-Rodríguez L, Thomet-Isla M (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the South of Chile and highland accessions. J Plant Breed Crop Sci 1(5):210–216

    Google Scholar 

  • Andersen SD, Rasmussen L, Jensen CR, Mogensen VO, Andersen MN, Jacobsen S-E (1996) Leaf water relations and gas exchange of field grown Chenopodium quinoa Willd. during drought. In: Stolen O, Pithan K, Hill J (eds) Small Grain Cereals and Pseudocereals. Workshop at KVL, Copenhagen

    Google Scholar 

  • Aragón L, Gutiérrez W (1992) El mildiú en cuatro especies de Chenopodium. Fitopatologia 27:104–109

    Google Scholar 

  • Bendevis MA, Sun Y, Shabala S, Rosenqvist E, Liu F, Jacobsen S-E (2013) Differentiation of photoperiod induced ABA and soluble sugar responses of two quinoa (Chenopodium quinoa Willd.) cultivars. J Plant Growth Regul. doi:10.1007/s00344-013-9406-9

  • Bertero HD (2003) Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd.). Food Rev Int 19(1–2):87–97

    Google Scholar 

  • Bertero HD, De la Vega AJ, Correa G, Jacobsen S-E, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Res 89:299–318

    Google Scholar 

  • Bhargava A, Rana TS, Shukla S, Ohri D (2005) Seed protein electrophoresis of some cultivated and wild species of Chenopodium (Chenopodiaceae). Biol Plant 49(4):505–511

    CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa. An Indian perspective. Ind Crops Prod 23:73–87

    CAS  Google Scholar 

  • Bois J, Winkel T, Lhomme J, Raffaillac J, Rocheteau A (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. Eur J Agron 25:299–308

    Google Scholar 

  • Bonifacio A (1995). Interspecific and intergeneric hybridization in chenopod species thesis M.Sc., Provo, Utah Brigham Young University, 150 p

  • Bosque H, Lemeur R, Van Damme P, Jacobsen S-E (2003) Ecophysiological analysis of drought and saline stress of quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:111–119

    Google Scholar 

  • Burrieza HP, Koyro HW, Tosar LM, Kobayashi K, Maldonado S (2012) High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos. Plant Soil 354:69–79

    CAS  Google Scholar 

  • Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Gen Res 5:82–95

    CAS  Google Scholar 

  • Christiansen JL, Jacobsen S-E, Jørgensen ST (2010) Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agric Scand 60(6):539–544

    Google Scholar 

  • Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:439–447

    CAS  Google Scholar 

  • Costa-Tártara SM, Manifesto MM, Bramardi SJ, Bertero HD (2012) Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13(4):1027–1038

    Google Scholar 

  • Danial D, Parlevliet J, Almekinders C, Thiele G (2007) Farmers’ participation and breeding for durable disease resistance in the Andean region. Euphytica 153:385–396

    Google Scholar 

  • Danielsen S, Munk L (2004) Evaluation of disease assessment methods in quinoa for their ability to predict yield loss caused by downy mildew. Crop Prot 23:219–228

    Google Scholar 

  • Danielsen S, Jacobsen S-E, Hockenhull J (2002) First report of downy mildew of quinoa caused by Peronospora farinosa f. sp. chenopodii in Denmark. Plant Dis 86:1175

    Google Scholar 

  • Danielsen S, Mercado VH, Ames T, Munk L (2004) Seed transmission of downy mildew (Peronospora farinosa f. sp chenopodii) in quinoa and effect of relative humidity on seedling infection. Seed Sci Technol 32:91–98

    Google Scholar 

  • Del Castillo C, Winkel T, Mahy G, Bizoux J-P (2007) Genetic structure of quinoa (Chenopodium quinoa Willd) from the Bolivian Altiplano as revealed by RAPD markers. Gen Res Crop Evol 54:897–905

    CAS  Google Scholar 

  • Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash, and cotton in Northern Peru. Science 316(5833):1890–1893

    CAS  PubMed  Google Scholar 

  • Fairbanks DJ, Burgener KW, Robison LR, Andersen WR, Ballon E (1990) Electrophoretic characterization of quinoa seed proteins. Plant Breed 104:190–195

    CAS  Google Scholar 

  • Fairbanks D, Waldrigues A, Ruas CF, Maughan PJ, Robison LR, Andersen WR, Riede CR, Pauley CS, Caetano LG, Arantes OM, Fungaro MHP, Vidotto MC, Jankevicius SE (1993) Efficient characterization of biological diversity using field DNA extraction and random amplified polymorphic DNA markers. Rev Brazil Genet 16:11–22

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Rome. ISBN 978-92-5-106534-1. 370 p

  • Food and Agriculture Organization of the United Nations (FAO) (2011) Faostat for worldwide grown surface and production of quinoa. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567

  • Food and Agriculture Organization of the United Nations (FAO) (2012) International Year of the Quinoa IYQ-2013. http://www.rlc.fao.org/en/about-fao/iyq-2012/

  • Fuentes F (2008) Mejoramiento genético de la quínoa. Agricultura del Desierto 4:71–89

    Google Scholar 

  • Fuentes F, Bhargava A (2011) Morphological analysis of Quinoa germplasm grown under lowland desert conditions. J Agron Crop Sci 197:124–134

    Google Scholar 

  • Fuentes F, Martínez E, Hinrichsen P, Jellen E, Maughan P (2009a) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377

    CAS  Google Scholar 

  • Fuentes F, Maughan P, Jellen E (2009b) Diversidad genética y recursos genéticos para el mejoramiento de la Quínoa (Chenopodium quinoa Willd). Rev Geogr Valpso 42:20–33. http://www.rgv.ucv.cl/Articulo%2042-3.pdf

  • Fuentes F, Bazile D, Bhargava A, Martínez EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agric Sci 150(6):702–716

    Google Scholar 

  • Galwey NW (1993) The potential of quinoa as a multipurpose crop for agricultural diversification: a review. Ind Crops Prod 1:101–106

    Google Scholar 

  • Galwey NW, Risi J (1984) Development of the Andean grain crop quinoa for production in Britain. University of Cambridge Annual Report, Cambridge, UK

    Google Scholar 

  • Gandarillas H (1948) Efecto fisiológico de la saponina de la quinua en los animales. Rev Agric 4:52–56

    Google Scholar 

  • Gandarillas H (1969) Esterilidad genética y citoplásmica en la quinoa (Chenopodium quinoa). Turrialba 19(3):429–430

    Google Scholar 

  • Gandarillas H (1979) Genetica y origen. In: Tapia ME (ed) Quinoa y Kaniwa. Instituto Interamericano de Ciencias Agricolas, Bogotá, pp 45–64

    Google Scholar 

  • Gómez MB, Aguirre Castro P, Mignone C, Bertero HD (2011) Can yield potential be increased by manipulation of reproductive partitioning in quinoa (Chenopodium quinoa)? Evidence from gibberellic acid synthesis inhibition using Paclobutrazol. Funct Plant Biol 38(5):420–430

    Google Scholar 

  • Gómez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J Agric Food Chem 60:4620–4627

    PubMed  Google Scholar 

  • Gómez-Pando LR, Álvarez-Castro R, Eguiluz-De La Barra A (2010) Effect of salt stress on peruvian germplasm of Chenopodium quinoa Willd.: a promising crop. J Agron Crop Sci 196(5):391–396

    Google Scholar 

  • González JA, Bruno M, Valoy M, Prado FE (2011) Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten Quinoa cultivars grown under drought. J Agron Crop Sci 197:81–93

    Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen S-E (1997) Adaptation of quinoa (Chenopodium quinoa) to Northern European agriculture: studies on developmental pattern. Euphytica 96:41–48

    Google Scholar 

  • Jacobsen S-E (1998) Developmental stability of quinoa under European conditions. Ind Crops Prod 7:169–174

    Google Scholar 

  • Jacobsen S-E (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    Google Scholar 

  • Jacobsen S-E, Bendevis MA (2013) Adaptation and scope for quinoa in Northern latitudes of Europe. In: FAO—In the International Year of the Quinua, Chapter 5.11. (in press)

  • Jacobsen S-E, Jorgensen I, Stolen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperature climatic conditions in Denmark. J Agric Sci 122:47–52

    Google Scholar 

  • Jacobsen S, Hill J, Stolen O (1996) Stability of quantitative traits in quinoa (Chenopodium quinoa). Theor Appl Genet 93:110–116

    CAS  PubMed  Google Scholar 

  • Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109

    Google Scholar 

  • Jacobsen S-E, Monteros C, Christiansen JL, Bravo LA, Corcuera LJ, Mujica A (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron 22:131–139

    Google Scholar 

  • Jacobsen S-E, Monteros C, Corcuera L, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475

    Google Scholar 

  • Jacobsen S-E, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hort 122:281–287

    CAS  Google Scholar 

  • Jacobsen S-E, Christiansen JL, Rasmussen J (2010) Weed harrowing and inter-row hoeing in organic grown quinoa (Chenopodium quinoa Willd.). Outlook on Agric 39:223–227

    Google Scholar 

  • Jacobsen S-E, Sørensen M, Pedersen SM, Weiner J (2013) Feeding the world: genetically modified crops versus agricultural biodiversity. Agron Sust Dev 33:651–662. doi:10.1007/s13593-013-0138-9

    Google Scholar 

  • Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87:39–51

    CAS  PubMed  Google Scholar 

  • Jellen EN, Kolano BA, Sederberg MC, Bonifacio A, Maughan PJ (2011) Chenopodium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 35–61

    Google Scholar 

  • Kenwright PA (1989) Breeding the Andean grain crop quinoa (Chenopodium quinoa) for cultivation in Britain. PhD thesis, University of Cambridge

  • Kitz L, Geary B, Stevens M, Hooper G (2009) Downy mildew resistance in four breeding lines of quinoa. Phytopathology 99:S184

    Google Scholar 

  • Kolano BA (2004) Genome analysis of a few Chenopodium species. Ph.D. thesis, University of Silesia, Katowice, Poland

  • Kolano B, Plucienniczak A, Kwasniewski M, Maluszynska J (2008) Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome. J Appl Genet 49(4):313–320

    PubMed  Google Scholar 

  • Kolano B, Gardunia BW, Michalska M, Bonifacio A, Fairbanks D, Maughan PJ, Coleman CE, Stevens MR, Jellen EN, Maluszynskaa J (2011) Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome 54(9):710–717

    CAS  PubMed  Google Scholar 

  • Koyro HW, Eisa SS (2008) Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302:79–90

    CAS  Google Scholar 

  • Koziol M (1992) Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J Food Comp Anal 5:35–68

    CAS  Google Scholar 

  • Kuljanabhagavad T, Thongphasuk P, Chamulitrat W, Wink M (2008) Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry 69:1919–1926

    CAS  PubMed  Google Scholar 

  • Kumar A, Bhargava A, Shukla S, Singh HB, Ohri D (2006) Screening of exotic Chenopodium quinoa accessions for downy mildew resistance under mid-eastern conditions of India. Crop Prot 25:879–889

    Google Scholar 

  • Ma SS, Gong QQ, Bohnert HJH (2006) Dissecting salt stress pathways. J Exp Bot 57(5):1097–1107

    CAS  PubMed  Google Scholar 

  • Martínez EA, Jorquera-Jaramillo C, Veas E, Chia E (2009a). El futuro de la quínoa en la región árida de Coquimbo: lecciones y escenarios a partir de una investigación sobre su biodiversidad en Chile para la acción con agricultores locales. Rev Geogr Valpso 42:95–111. http://www.rgv.ucv.cl/Articulo%2042-9.pdf

  • Martínez EA, Veas E, Jorquera C, San Martin R, Jara P (2009b) Re-introduction of quinoa into arid Chile: cultivation of two lowland races under extremely low irrigation. J Agron Crop Sci 195:1–10

    Google Scholar 

  • Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630

    CAS  Google Scholar 

  • Mastebroek H, Limburg H, Gilles T, Marvin H (2000) Ocurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd.). J Sci Food Agric 80:152–156

    CAS  Google Scholar 

  • Mastebroek H, van Loo E, Dolstra O (2002) Combining ability for seed yield traits of Chenopodium quinoa breeding lines. Euphytica 125:427–432

    CAS  Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen E, Stevens M, Coleman C, Ricks M, Mason S, Jarvis D, Gardunia B, Fairbanks D (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD and SSR markers. Theor Appl Genet 109:1188–1189

    CAS  PubMed  Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Perkinson SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839

    CAS  PubMed  Google Scholar 

  • Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales AJ, Udall JA, Fairbanks DJ, Bonifacio A (2009) Characterization of salt overly sensitive (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657

    CAS  PubMed  Google Scholar 

  • Maughan PJ, Smith SM, Rojas-Beltran JA, Elzinga D, Raney JA, Jellen EN, Bonifacio A, Udall JA, Fairbanks DJ (2012) Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. Plant Genome 5:114–125

    CAS  Google Scholar 

  • McElhinny E, Peralta E, Mazón N, Danial DL, Thiele G, Lindhout P (2007) Aspects of participatory plant breeding for quinoa in marginal areas of Ecuador. Euphytica 153:373–384

    Google Scholar 

  • Miranda M, Vega-Gálvez A, Martínez E, Lopez J, Rodriguez MJ, Henríquez K, Fuentes F (2012) Genetic diversity and comparison of physicochemical and nutritional characteristics of six quinoa (Chenopodium quinoa Willd.) genotypes cultivated in Chile. Ciencia Tecn Alim 32:835–843

    Google Scholar 

  • Miranda M, Vega-Gálvez A, Martinez EA, López J, Marín R, Aranda M, Fuentes F (2013) Influence of contrasting environment on seed composition of two quinoa genotypes: nutritional and functional properties. Chil J Agric Res 73:108–116

    Google Scholar 

  • Mujica A, Jacobsen S (2006) La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. Botánica Económica de los Andes Centrales, Universidad Mayor de San Andrés. La Paz 2006:449–457

    Google Scholar 

  • Nelson DC (1968) Taxonomy and origins of Chinopodium quinoa and Chenopodium nuttalliae. Ph.D. thesis, University of Indiana, Bloomington

  • Palomino G, Hernandez LT, Torres ED (2008) Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp nuttalliae. Euphytica 164:221–230

  • Pulvento C, Riccardi M, Lavini A, Iafelice G, Marconi E, d’Andria R (2012) Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. J Agron Crop Sci 198(4):254–263

    CAS  Google Scholar 

  • Rana TS, Narzary D, Ohri D (2010) Genetic diversity and relationships among some wild and cultivated species of Chenopodium L. (Amaranthaceae) using RAPD and DAMD methods. Curr Sci 98:840–846

    CAS  Google Scholar 

  • Razzaghi F, Ahmadi SH, Adolf VI, Jensen CR, Jacobsen SE, Andersen MN (2011) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360

    Google Scholar 

  • Razzaghi F, Plauborg F, Jacobsen SE, Jensen CR, Andersen MN (2012) Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric Water Man 109:20–29

    Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189

    Google Scholar 

  • Reynolds DJ (2009) Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. MSc thesis. Brigham Young University, Utah, United States

  • Risi J (1986) Adaptation of the Andean grain crop quinoa (Chenopodium quinoa Willd.) for cultivation in Britain. Ph.D. thesis, University of Cambridge

  • Risi J, Galwey NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216

    Google Scholar 

  • Rojas W, Valdivia R, Padulosi S, Pinto M, Soto JL, Alcocer E, Guzmán L, Estrada R, Apaza V, Bravo R (2009) From neglect to limelight: issues, methods and approaches in enhancing sustainable conservation and use of Andean grains in Bolivia and Peru. J Agric Rural Dev Trop Subtrop 92:87–117

    Google Scholar 

  • Ruas P, Bonifacio A, Ruas C, Fairbanks D, Andersen W (1999) Genetic relationship among 19 accessions of six species Chenopodium L., by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martínez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 15:144–147

    CAS  PubMed  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199

    CAS  Google Scholar 

  • Shabala L, Mackay A, YuTian Jacobsen S-E, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa Willd.). Physiol Plant 146(1):26–38

    CAS  PubMed  Google Scholar 

  • Simmons NW (1971) The breeding system of Chenopodium quinoa. I. Male Sterility. Heredity 27:73–82

    Google Scholar 

  • Solíz-Guerrero JB, de Rodriguez DJ, Rodriguez-Garcia R, Angulo-Sanchez JL, Mendez-Padilla G (2002) Quinoa saponins: concentration and composition analysis. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 110–114

    Google Scholar 

  • Spehar CR, Rocha JED (2010) Exploiting genotypic variability from low-altitude Brazilian Savannah-adapted Chenopodium quinoa. Euphytica 175:13–21

    Google Scholar 

  • Spehar CR, Santos RLD (2005) Agronomic performance of Quinoa selected in the Brazilian Savannah. Pesq Agrop Brasil 40(6):609–612

    Google Scholar 

  • Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang H-B, Balzotti MR, Kooyman DL, Arumuganathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens JJ (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600

    CAS  PubMed  Google Scholar 

  • Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, Jacobsen S-E, Milovanovic M (2012) Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55:132–138

    CAS  Google Scholar 

  • Testen AL, McKemy JM, Backman PA (2012) First report of quinoa downy mildew caused by Peronospora variabilis in the United States. Plant Dis 96:146

    Google Scholar 

  • Tewari JP, Boyetchko SM (1990) Occurrence of Peronospora farinosa f.sp. chenopodii on quinoa in Canada. Can Plant Dis Surv 70:127–128

    Google Scholar 

  • Trognitz B (2003) Prospects of breeding quinoa for tolerance to abiotic strees. Food Rev Int 19:129–137

    Google Scholar 

  • Urcelay C, Acho J, Joffre R (2010) Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3,700 m elevation. Mycorrhiza 21(5):323–330

    PubMed  Google Scholar 

  • Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    PubMed  Google Scholar 

  • Verma SC, Chauhan LS, Mathur RS (1964) Peronospora farinose (Fr.) on Chenopodium murale L.—a new record for India. Curr Sci 23:720–721

    Google Scholar 

  • Ward SM (1991) Male sterility in quinoa (Chenopodium quinoa Willd.). MS thesis, Colorado State University, Fort Collins

  • Ward SM (1998) A new source of restorable cytoplasmic male sterility. Euphytica 101:157–163

    Google Scholar 

  • Ward SM (2000) Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16

    CAS  Google Scholar 

  • Ward SM, Johnson DL (1994) Recessive gene determining male-sterility in quinoa. J Hered 85:231–233

    Google Scholar 

  • Wilson HD (1980) Artificial hybridization among species of Chenopodium sect. Chenopodium. Syst Bot 5:253–263

    Google Scholar 

  • Wilson HD (1988a) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477

    Google Scholar 

  • Wilson HD (1988b) Quinoa biosystematics II: free living populations. Econ Bot 42:47–494

    Google Scholar 

  • Wilson HD (1990) Quinoa and relatives (Chenopodium sect. Chenopodium subsect. Cellulata). Econ Bot 44:92–110

    Google Scholar 

Download references

Acknowledgments

The authors thank José Manuel Villegas for his valuable contribution to this article. Funding from the TWAS-ICGEB exchange program ‘Tolerance strategies of quinoa plants under salt stress’ (CRP.PB/CHI06–01), from the EU IRSES program (PIRSES-GA-14 2008–230862) and Innova Chile (BioTecZA 06FC01IBC-71) to Dr. Zurita-Silva is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés R. Schwember.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zurita-Silva, A., Fuentes, F., Zamora, P. et al. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Mol Breeding 34, 13–30 (2014). https://doi.org/10.1007/s11032-014-0023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0023-5

Keywords

Navigation