Skip to main content
Log in

Complex dynamics in a reaction-cross-diffusion model with refuge depending on predator–prey encounters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The contemporary study copes with a generalist predator–prey model with nonlinear cross-diffusion embracing prey refuge in proportion to both the species along with the ratio-dependent functional response. The investigation commences with the well-posedness keeping in view of the existence of all feasible non-negative equilibria together with their global dynamics for the corresponding temporal model. The refuge parameter plays a key role in the dynamics of the model in general and mediates the uniform persistence, the stability of the boundary and coexistent equilibria and even the Turing instability space, in particular. Another important observation is that refuge possessing a constant proportion predator–prey encounters leads to a weaker stabilizing effect than refuge possessing a constant proportion prey under certain system parameters. Subsequent exploration on three eminent classes of mechanism for Turing instability around the positive spatially homogeneous steady state reveals dynamical complexity stimulated by generalist predator of the model system. Some comparisons are given between refuge depending on prey and refuge depending on both the species. Finally, numerical simulations expose to view the growth of spatiotemporal patterns controlled by prey refuge together with both self- and cross-diffusion following the sequence of spots, stripe–spot mixtures, stripes, labyrinth, stripe–hole mixtures and holes as well. Thus the proposed model appears to be rich and complex from the dynamical point of view having novelty to contribute much to the system in the realm of ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. H. Amann, Dynamic theory of quasilinear parabolic systems III. Global existence. Math. Z. 202, 219–250 (1989)

    Article  MathSciNet  Google Scholar 

  2. H. Amann, Dynamic theory of quasilinear parabolic equations II. Reaction–diffusion systems. Differ. Integr. Equ. 3, 13–75 (1990)

  3. R. Arditi, A.A. Berryman, The biological control paradox. Trends Ecol. Evol. 6, 32–43 (1991)

    Article  Google Scholar 

  4. R. Arditi, L.R. Ginzburg, Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1980)

    Article  ADS  Google Scholar 

  5. J.B. Collings, Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995)

    Article  Google Scholar 

  6. C. Cosner, Variability, vagueness and comparison methods for ecological models. Bull. Math. Biol. 58, 207–246 (1996)

    Article  Google Scholar 

  7. M. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridage, 2009)

    Book  Google Scholar 

  8. G. Gambino, M. Lombardo, M. Sammartino, Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear Anal. RWA 14, 1755–1779 (2013)

    Article  MathSciNet  Google Scholar 

  9. M.R. Garvie, Finite-difference schemes for reaction–diffusion equations modelling predator–prey interactions in MATLAB. Bull. Math. Biol. 69, 931–956 (2007)

    Article  MathSciNet  Google Scholar 

  10. E. González-Olivares, B. Gonzá-Yáñez, R. Becerra-Klix, et al., Multiple stable states in a model based on predator-induced defenses. Ecol. Complex. 32, 111–120 (2017)

  11. E. González-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  12. E. González-Olivares, R. Ramos-Jiliberto, Comments to the effect of prey refuge in a simple predator–prey model. Ecol. Model. 232, 158–160 (2012)

    Article  Google Scholar 

  13. L.N. Guin, S. Pal, S. Chakravarty, S. Djilali, pattern dynamics of a reaction–diffusion predator–prey system with both refuge and harvesting. Int. J. Biomath. (2021). https://doi.org/10.1142/S1793524520500849

  14. L.N. Guin, S. Acharya, Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and harvesting. Nonlinear Dyn. 88, 1501–1533 (2017)

    Article  MathSciNet  Google Scholar 

  15. L.N. Guin, P.K. Mandal, Effect of prey refuge on spatiotemporal dynamics of reaction–diffusion system. Comput. Math. Appl. 68, 1325–1340 (2014)

    Article  MathSciNet  Google Scholar 

  16. R.J. Han, B.X. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton–zooplankton model with Allee effect. Nonlinear Anal. Real World Appl. 45, 822–853 (2019)

    Article  MathSciNet  Google Scholar 

  17. R.J. Han, L.N. Guin, B.X. Dai, Cross-diffusion-driven pattern formation and selection in a modified Leslie–Gower predator–prey model with fear effect. J. Biol. Syst. 28, 1–38 (2020)

    Article  MathSciNet  Google Scholar 

  18. R.J. Han, L.N. Guin, B.X. Dai, Consequence of refuge and diffusion in a spatiotemporal predator–prey model. Nonlinear Anal. Real World Appl. 60, 103311 (2021)

    Article  MathSciNet  Google Scholar 

  19. I. Hanski, The functional response of predators: worries about scale. Trends Ecol. Evol. 6, 141–142 (1991)

    Article  Google Scholar 

  20. M. Haque, Md. Rahman, E. Sabiar & Venturino, et al., Effect of a functional response-dependent prey refuge in a predator–prey model. Ecol. Complex. 20, 248–256 (2014)

  21. J. Hardenberg Von, et al. Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, Art. no 198101 (2001)

  22. B.A. Hawkins, M.B. Thomas, M.E. Hochberg, Refuge theory and biological control. Science 262, 1429–1432 (1993)

    Article  ADS  Google Scholar 

  23. S.B. Hsu, T.W. Hwang, Y. Kuang, Rich dynamics of a ratio-dependent one-prey two-predators model. J. Math. Biol. 43, 377–396 (2001)

    Article  MathSciNet  Google Scholar 

  24. L. Ji, C. Wu, Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 11, 2285–2295 (2010)

    Article  MathSciNet  Google Scholar 

  25. W. Ko, K. Ryu, Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534–550 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. V. Krivan, Effects of optimal antipredator behavior of prey on predator–prey dynamics: the role of refuges. Theor. Popul. Biol. 53, 131–142 (1998)

    Article  Google Scholar 

  27. O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type (Amererican Mathmathical Society, 1968)

  28. D. Le, Cross diffusion systems on n dimensional spatial domains. Indiana Univ. Math. J. 51, 625–644 (2002)

    Article  MathSciNet  Google Scholar 

  29. G.M. Lieberman, Second Order Parabolic Differential Equations (World Scientific Publishing Co. Pte. Ltd., Singapore, 1996)

  30. Y. Lv, R. Yuan, Y. Pei, Effect of harvesting, delay and diffusion in a generalist predator–prey model. Appl. Math. Comput. 226, 348–366 (2014)

    MathSciNet  MATH  Google Scholar 

  31. A. Madzvamuse, H. Ndakwo, R. Barreira, Cross-diffusion-driven instability for reaction–diffusion systems: analysis and simulations. J. Math. Biol. 70, 709–743 (2015)

    Article  MathSciNet  Google Scholar 

  32. H. Malchow, Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proc. R. Soc. B 251, 103–109 (1993)

    Article  ADS  Google Scholar 

  33. J.N. McNair, The effects of refuges on predator–prey interactions: a reconsideration. Theor. Popul. Biol. 29, 38–63 (1986)

    Article  MathSciNet  Google Scholar 

  34. Md. Haque, S. Sarwardi Manarul, Dynamics of a harvested prey–predator model with prey refuge dependent on both species. Int. J. Bifurc. Chaos 28, 1–16 (2018)

  35. L.D. Mech, Wolf-pack buffer zones as prey reservoirs. Science 198, 320–321 (1977)

    Article  ADS  Google Scholar 

  36. H. Molla, Md. Rahman, S. Sabiar Sarwardi, Dynamics of a predator-prey model with Holling Type II functional response incorporating a prey refuge depending on both the species. Int. J. Nonlinear Sci. Numer. Simul. 20, 89–104 (2019)

  37. J.D. Murray, Mathematical Biology I II (Springer, Heidelberg, 2002)

    Book  Google Scholar 

  38. G.D. Ruxton, Short term refuge use and stability of predator–prey models. Theor. Popul. Biol. 47, 1–17 (1995)

    Article  Google Scholar 

  39. D. Ryan, Robert S. Cantrell, Avoidance behavior in intraguild predation communities: a cross-diffusion model. Disc. Cont. Dyn. Syst. A 35, 1641–1663 (2015)

    Article  MathSciNet  Google Scholar 

  40. M. Sambath, K. Balachandran, L.N. Guin, Spatiotemporal patterns in a predator–prey model with cross-diffusion effect. Int. J. Bifurc. Chaos 28, Art. no 1830004 (2018)

  41. S.J. Schreiber, Generalist and specialist predators that mediate permanence in ecological communities. J. Math. Biol. 36, 133–148 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  42. N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interaction species. J. Theor. Biol. 79, 83–99 (1979)

    Article  ADS  Google Scholar 

  43. Y. Song, X. Tang, Stability, steady-state bifurcations, and Turing patterns in a predator–prey model with herd behavior and prey-taxis. Stud. Appl. Math. 139(3), 371–404 (2017)

    Article  MathSciNet  Google Scholar 

  44. G.Q. Sun et al., Spatial patterns of a predator–prey model with cross-diffusion. Nonlinear Dyn. 69, 1631–1638 (2012)

    Article  MathSciNet  Google Scholar 

  45. G.Q. Sun, Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  46. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. (Springer, NewYork, 2003)

    MATH  Google Scholar 

  47. S. Wu, J. Wang, J. Shi, Dynamics and pattern formation of a diffusive predator–prey model with predator-taxis. Math. Models Methods Appl. Sci. 28, 2275–2312 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author (Dr. R.J. Han) acknowledges the foundation support from Youth Foundation of Zhejiang University of Science and Technology (Grant No. 2021QN001). The second and third authors are grateful to the Department of Mathematics, Visva-Bharati, Santiniketan, 731235, West Bengal, India for providing opportunities to carry out the present research work. The second author (Dr. L.N. Guin) gratefully acknowledges the financial support in part from Special Assistance Programme (SAP-III) sponsored by the University Grants Commission, New Delhi, India (Grant No. F.510/3/DRS-III/2015 (SAP-I)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renji Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A: The proof of Lemma 3.2

Appendix A: The proof of Lemma 3.2

Proof

It follows from \(s_4<0\) that \(\delta -\gamma -\lambda <0\), which implies \(s_1<0\). Since \(s_0>0, s_1<0, s_4<0\), we get the total number of sign changes from one coefficient to the next in the sequence \(s_0, s_1, s_2, s_3, s_4\) is either equal to three or one. By \(Descartes'\,\,Rule\,\,of\,\,signs\), we obtain that the number of positive real roots of the polynomial Eq. (12) is either equal to one or three. Next we claim that Eq. (12) has only one positive real root under the assumptions \(s_3>0\) and \(s_1^2<\frac{8}{3}s_0s_2\). Since \(f^{\prime \prime }(x)=12s_0x^2+6s_1x+2s_2\), it follows that \(f^{\prime \prime }(x)>0\) according to \(s_0>0\) and \(\Delta :=36s_1^2-96s_0s_2<0\), which implies that \(f^\prime (x)\) is strictly monotone increasing in the interval \([0,\infty )\). Since \(f^\prime (0)=s_3>0\), we obtain \(f^\prime (x)>0\) in the interval \([0,\infty )\), which implies that f(x) is strictly monotone increasing in \([0,\infty )\). Hence Eq. (12) has only one positive root, and this completes the proof of part (i).

Finally, if \(s_2<0\) and \(s_3<0\) besides \(s_4<0\), then the total number of sign changes is equal to one, which implies that there is exactly one positive real root in Eq. (12). This proves (ii). Therefore the proof of the lemma is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Guin, L.N. & Acharya, S. Complex dynamics in a reaction-cross-diffusion model with refuge depending on predator–prey encounters. Eur. Phys. J. Plus 137, 134 (2022). https://doi.org/10.1140/epjp/s13360-022-02358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02358-7

Navigation