Skip to main content

Advertisement

Log in

Mathematical modeling of population dynamics with Allee effect

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Allee effect that refers to a positive relationship between individual fitness and population density provides an important conceptual framework in conservation biology. While declining Allee effect causes reduction in extinction risk in low-density population, it provides a benefit in limiting establishment success or spread of invading species. Population models that incorporated Allee effect confer the fundamental role which plays for shaping the population dynamics. In particular, non-spatial predator–prey and invasion models have shown the influence of Allee effects on population dynamics, and spatial models have illustrated its critical roles for pattern formation and the manifestation of traveling wave fronts. We highlight all such no-spatial and spatial population models and their contributions in deeper understanding of population dynamics. In addition, we briefly outline the trends for future research on Allee effect which we think are interesting and widely open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ackleh, A.S., Allen, L.J., Carter, J.: Establishing a beachhead: a stochastic population model with an allee effect applied to species invasion. Theor. Popul. Biol. 71, 290–300 (2007)

    Article  MATH  Google Scholar 

  2. Allee, W.C.: Animal Aggregations. University of Chicago Press, Chicago (1931)

    Google Scholar 

  3. Allee, W.C.: Cooperation Among Animals. Henry Shuman, New York (1951)

    Google Scholar 

  4. Allee, W.C.: The Social Life of Animals. Beacon Press, Boston (1958)

    Google Scholar 

  5. Allee, W.C., Bowen, E.: Studies in animal aggregations: mass protection against colloidal silver among goldfishes. J. Exp. Zool. 61, 185–207 (1932)

    Article  Google Scholar 

  6. Allee, W.C., Emerson, O., Park, T., Schmidt, K.: Principles of Animal Ecology. Saunders, Philadelphia (1949)

    Google Scholar 

  7. Almeida, R.C., Delphim, S.A., Costa, M.I.D.S.: A numerical model to solve single-species invasion problems with allee effects. Ecol. Model. 192, 601–617 (2006)

    Article  Google Scholar 

  8. Andrewartha, H.G., Birch, L.C.: The Distribution and Abundance of Animals. University of Chicago Press, Chicago (1954)

    Google Scholar 

  9. Assaf, M., Meerson, B.: Extinction of metastable stochastic populations. Phys. Rev. E 81, 021116 (2010)

    Article  Google Scholar 

  10. Bashkirtseva, I., Ryashko, L.: Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with allee effect. Chaos 21, 047514 (2011)

    Article  MATH  Google Scholar 

  11. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of turing–hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  12. Berec, L., Angulo, E., Courchamp, F.: Multiple allee effects and population management. Trends Ecol. Evol. 22, 185–191 (2007)

    Article  Google Scholar 

  13. Bertram, B.C.R.: Living in Groups: Predators and Prey. Blackwell Scientific, Oxford (1978)

    Google Scholar 

  14. Bessa-Gomes, C., Legendre, S., Clobert, J.: Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol. Lett. 7, 802–812 (2004)

    Article  Google Scholar 

  15. Birkhead, T.R.: The effects of habitat and density on breeding success in the common guillemot (uria aalge). J. Anim. Ecol. 46, 751–764 (1977)

    Article  Google Scholar 

  16. Boukal, D.S., Sabelis, M.W., Berec, L.: How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor. Popul. Biol. 72, 136–147 (2007)

    Article  MATH  Google Scholar 

  17. Chen, J.-X., Peng, L., Zheng, Q., Zhao, Y.-H., Ying, H.-P.: Influences of periodic mechanical deformation on pinned spiral waves. Chaos 24, 033103 (2014)

    Article  MathSciNet  Google Scholar 

  18. Chen, J.-X., Peng, L., Ma, J., Ying, H.-P.: Liberation of a pinned spiral wave by a rotating electric pulse. EPL 107, 38001 (2014)

    Article  Google Scholar 

  19. Clark, C.W.: Possible effects of schooling on the dynamics of exploited fish populations. J. Cons. Int. Explor. Mer 36, 7–14 (1974)

    Article  Google Scholar 

  20. Compte, A.: Stochastic foundations of fractional dynamics. Phys. Rev. E 53, 4191–4193 (1996)

    Article  Google Scholar 

  21. Courchamp, F., Berec, J., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  22. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the allee effect. Trends Ecol. Evol. 14, 405–410 (1999)

    Article  Google Scholar 

  23. Courchamp, F., Grenfell, B.T., Clutton-Brock, T.H.: Impact of natural enemies on obligately cooperative breeders. Oikos 91, 311–322 (2000)

    Article  Google Scholar 

  24. Cushing, J., Hudson, J.T.: Evolutionary dynamics and strong allee effects. J. Biol. Dyn. 6, 941–958 (2012)

    Article  Google Scholar 

  25. Dennis, B.: Allee-effects: population growth, critical density, and the chance of extinction. Nat. Res. Model. 3, 481–538 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Dennis, B.: Allee effects in stochastic populations. Oikos 96, 389–401 (2002)

    Article  Google Scholar 

  27. Deredec, A., Courchmp, F.: Extinction thresholds in host-parasite dynamics. Ann. Zool. Fenn. 40, 115–130 (2003)

    Google Scholar 

  28. Elaydi, S.N., Sacker, R.J.: Population models with allee effect: a new model. J. Biol. Dyn. 4, 397–408 (2010)

    Article  MathSciNet  Google Scholar 

  29. Fasani, S., Rinaldi, S.: Remarks on cannibalism and pattern formation in spatially extended prey–predator systems. Nonlinear Dyn. 62, 2543–2548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Freund, J., Schimansky-Geier, L., Beisner, B., Neiman, A., Russell, D., Yakusheva, T., Moss, F.: Behavioral stochastic resonance: how the noise from a daphnia swarm enhances individual prey capture by juvenile paddlefish. J. Theor. Biol. 214, 71–83 (2002)

    Article  Google Scholar 

  31. Gascoigne, J.C., Lipcius, R.N.: Allee effects driven by predation. J. Appl. Ecol. 41, 801–810 (2004)

    Article  Google Scholar 

  32. Giona, M., Roman, H.: Fractional diffusion equation for transport phenomena in random media. Phys. A 185, 87–97 (1992)

    Article  Google Scholar 

  33. Gourley, S., Kuang, Y.: A stage structured predator–prey model and its dependence on through-stage delay and death rate. J. Math. Biol. 49, 188–200 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Groom, M.: Allee effects limit population viability of an annual plant. Am. Nat. 151, 487–496 (1998)

    Article  Google Scholar 

  35. Gyllenberg, M., Parvinen, K.: Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol. 63, 981–993 (2001)

    Article  MATH  Google Scholar 

  36. Henry, B., Wearne, S.: Existence of turing instabilities in a two-species fractional reaction–diffusion system. SIAM J. Appl. Math. 62, 870–887 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hilker, F., Langlais, M., Malchow, H.: The allee effect and infectious diseases: extinction, multistability, and the (dis-) appearance of oscillations. Am. Nat. 173, 72–88 (2009)

    Article  Google Scholar 

  39. Hilker, F.M., Langlais, M., Petrovskii, S.V., Malchow, H.: A diffusive SI model with Allee effect and application to FIV. Math. Biosci. 206, 61–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hilker, F.M., Lewis, M.A., Seno, H., Langlais, M., Malchow, H.: Pathogens can slow down or reverse invasion fronts of their hosts. Biol. Invasions 7, 817–832 (2005)

    Article  Google Scholar 

  41. Jang, S.R.J.: Dynamics of an age-structured population with allee effects and harvesting. J. Biol. Dyn. 4, 409–427 (2010)

    Article  MathSciNet  Google Scholar 

  42. Kang, Y., Lanchier, N.: Expansion or extinction: deterministic and stochastic two-patch models with Allee effects. J. Math. Biol. 62, 925–973 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kent, A., Doncaster, C.P., Sluckin, T.: Consequences for predators of rescue and allee effects on prey. Ecol. Model. 162, 233–245 (2003)

    Article  Google Scholar 

  44. Kramer, A., Dennis, B., Liebhold, A., Drake, J.: The evidence for allee effects. Popul. Ecol. 51, 341–354 (2009)

    Article  Google Scholar 

  45. Lande, R.: Demographic stochasticity and Allee effect on a scale with isotropic noise. Oikos 83, 353–358 (1998)

    Article  Google Scholar 

  46. Lee, A.M., Sather, B.E., Engen, S.: Demographic stochasticity, Allee effects, and extinction: the influence of mating system and sex ratio. Am. Nat. 177, 301–313 (2011)

    Article  Google Scholar 

  47. Levy, J., Scott, M., Avioli, L.: Mineral homeostasis in neonates of streptozotocin-induced noninsulin-dependent diabetic rats and in their mothers during pregnancy and lactation. Bone 8, 1–6 (1987)

    Article  Google Scholar 

  48. Lewis, M., Kareiva, P.: Allee dynamics and the spread of invading organisms. Theor. Popul. Biol. 43, 141–158 (1993)

    Article  MATH  Google Scholar 

  49. Lewis, M., Pacala, S.: Modeling and analysis of stochastic invasion processes. J. Math. Biol. 41, 387–429 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Li, A.-W.: Impact of noise on pattern formation in a predator–prey model. Nonlinear Dyn. 66, 689–694 (2011)

    Article  MathSciNet  Google Scholar 

  51. Li, L., Jin, Z.: Pattern dynamics of a spatial predator–prey model with noise. Nonlinear Dyn. 67, 1737–1744 (2012)

    Article  MathSciNet  Google Scholar 

  52. Liu, P.-P., Xue, Y.: Spatiotemporal dynamics of a predator–prey model. Nonlinear Dyn. 69, 71–77 (2012)

    Article  MathSciNet  Google Scholar 

  53. Liu, T.-B., Ma, J., Zhao, Q., Tang, J.: Force exerted on the spiral tip by the heterogeneity in an excitable medium. EPL 104, 58005 (2013)

    Article  Google Scholar 

  54. Lou, Q., Chen, J.-X., Zhao, Y.-H., Shen, F.-R., Fu, Y., Wang, L.-L., Liu, Y.: Control of turbulence in heterogeneous excitable media. Phys. Rev. E 85, 026213 (2012)

    Article  Google Scholar 

  55. Ma, J., Liu, Q., Ying, H., Wu, Y.: Emergence of spiral wave induced by defects block. Commun. Nonlinear Sci. Numer. Simul. 18, 1665–1675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

    Article  Google Scholar 

  57. Ma, J., Wang, C.N., Jin, W.Y., Wu, Y.: Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin–Huxley neurons. Appl. Math. Comput. 217, 3844–3852 (2010)

    MathSciNet  MATH  Google Scholar 

  58. MacDonald, N.: Time lags in biological models. In: Lecture Notes in Biomathematics. Springer, Berlin (1985)

  59. Matsuda, H., Abrams, P.: Timid consumers: self-extinction due to adaptive change in foraging and anti-predator effort. Theor. Popul. Biol. 45, 76–91 (1994)

    Article  MATH  Google Scholar 

  60. Medvinsky, A., Petrovskii, S., Tikhonova, I., Malchow, H., Li, B.-L.: Spatio-temporal complexity of plankton and fish dynamics in simple model ecosystems. SIAM Rev. 44, 311–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. Mendez, V., Sans, C., Llopis, I., Campos, D.: Extinction conditions for isolated populations with Allee effect. Math. Biosci. 232, 78–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Metzler, R., Glockle, W., Nonnenmacher, T.: Fractional model equation for anomalous diffusion. Phys. A 211, 13–24 (1994)

    Article  Google Scholar 

  63. Mistro, D.C., Rodrigues, L.A.D., Petrovskii, S.: Spatiotemporal complexity of biological invasion in a space- and time-discrete predator–prey system with the strong allee effect. Ecol. Complex. 9, 16–32 (2012)

    Article  Google Scholar 

  64. Moller, A.P., Legendre, S.: Allee effect, sexual selection and demographic stochasticity. Oikos 92, 27–34 (2001)

    Article  Google Scholar 

  65. Morozov, A., Li, B.: On the importance of dimensionality of space in models of space-mediated population persistence. Theor. Popul. Biol. 71, 278–289 (2007)

    Article  MATH  Google Scholar 

  66. Morozov, A., Petrovskii, S., Li, B.: Bifurcations and chaos in a predator–prey system with the Allee effect. Proc. R. Soc. Lond. B 271, 1407–1414 (2004)

    Article  Google Scholar 

  67. Morozov, A., Petrovskii, S., Li, B.: Spatiotemporal complexity of patchy invasion in a predator–prey system with the Allee effect. J. Theor. Biol. 238, 18–35 (2006)

    Article  MathSciNet  Google Scholar 

  68. Murray, J.D.: Mathematical Biology. Springer, New York (2003)

    MATH  Google Scholar 

  69. Ovaskainen, O., Meerson, B.: Stochastic models of population extinction. Trends Ecol. Evol. 11, 643–652 (2010)

    Article  Google Scholar 

  70. Petrovskii, S., Li, B.-L.: An exactly solvable model of population dynamics with density-dependent migrations and the allee effect. Math. Biosci. 186, 79–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  71. Petrovskii, S., Malchow, H., Li, B.-L.: An exact solution of a diffusive predator–prey system. Proc. R. Soc. A 461, 1029–1053 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  72. Petrovskii, S., Morozov, A., Li, B.: Regimes of biological invasion in a predator–prey system with the Allee effect. Bull. Math. Biol. 67, 637–661 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  73. Petrovskii, S., Morozov, A., Venturino, E.: Allee effect makes possible patchy invasion in a predator–prey system. Ecol. Lett. 5, 345–352 (2002)

    Article  Google Scholar 

  74. Pinto, C.M.A., Machado, J.T.A.: Fractional central pattern generators for bipedal locomotion. Nonlinear Dyn. 62, 27–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  75. Real, L.: The kinetics of functional response. Am. Nat. 111, 289–300 (1977)

    Article  Google Scholar 

  76. Regoes, R.R., Ebert, D., Bonhoeffer, S.: Dose-dependent infection rates of parasites produce the Allee effect in epidemiology. Proc. R. Soc. Lond. B 269, 271–279 (2002)

    Article  Google Scholar 

  77. Reichenbach, T., Mobilia, M., Frey, E.: Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448, 1046–1049 (2007a)

    Article  Google Scholar 

  78. Reichenbach, T., Mobilia, M., Frey, E.: Noise and correlations in a spatial population model with cyclic competition. Phys. Rev. Lett. 99, 238105 (2007b)

    Article  Google Scholar 

  79. Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak Allee effect. J. Math. Biol. 52, 807–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  80. Stephens, P., Sutherland, W.: Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401–405 (1999)

    Article  Google Scholar 

  81. Sun, G.-Q., Jin, Z., Li, L., Liu, Q.-X.: The role of noise in a predator–prey model with Allee effect. J. Biol. Phys. 35, 185–196 (2009)

    Article  Google Scholar 

  82. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, B.-L.: Rich dynamics in a predator–prey model with both noise and periodic force. BioSystems 100, 14–22 (2010)

    Article  Google Scholar 

  83. Sun, G.-Q., Jin, Z., Li, L., Li, B.-L.: Self-organized wave pattern in a predator–prey model. Nonlinear Dyn. 60, 265–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  84. Sun, G.-Q., Wu, Z.-Y., Wang, Z., Jin, Z.: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83, 811–819 (2016)

    Article  MathSciNet  Google Scholar 

  85. Sun, G.-Q., Zhang, G., Jin, Z.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58, 75–84 (2009)

  86. Takimoto, G.: Early warning signals of demographic regime shifts in invading populations. Popul. Ecol. 51, 419–426 (2009)

    Article  Google Scholar 

  87. Verdy, A.: Modulation of predator–prey interactions by the Allee effect. Ecol. Model. 221, 1098–1107 (2010)

    Article  Google Scholar 

  88. Vergni, D., Iannaccone, S., Berti, S., Cencini, M.: Invasions in heterogeneous habitats in the presence of advection. J. Theor. Biol. 301, 141–152 (2012)

    Article  MathSciNet  Google Scholar 

  89. Wang, B., Wang, A.-L., Liu, Y.-J., Liu, Z.-H.: Analysis of a spatial predator–prey model with delay. Nonlinear Dyn. 62, 601–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  90. Wang, G., Liang, X.-G., Wang, F.-Z.: The competitive dynamics of populations subject to an Allee effect. Ecol. Model. 124, 183–192 (1999)

    Article  Google Scholar 

  91. Wang, J., Shi, J., Wei, J.: Predator–prey system with strong allee effect in prey. J. Math. Biol. 62, 291–331 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  92. Wang, M.-H., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171, 83–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  93. Wang, M.-H., Kot, M., Neubert, M.G.: Integrodifference equations, Allee effects, and invasions. J. Math. Biol. 44, 150–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  94. Wang, W., Liu, H., Li, Z., Guo, Z., Yang, Y.: Invasion dynamics of epidemic with the Allee effect. BioSystems 105, 25–33 (2011b)

    Article  Google Scholar 

  95. Wang, W.-X., Zhang, Y.-B., Liu, C.: Analysis of a discrete-time predator–prey system with Allee effect. Ecol. Complex. 8, 81–85 (2011c)

    Article  Google Scholar 

  96. Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  97. Zhang, X.-Q., Sun, G.-Q., Jin, Z.: Spatial dynamics in a predator–prey model with Beddington–DeAngelis functional response. Phys. Rev. E 85, 021924 (2012)

    Article  Google Scholar 

  98. Zhou, S.-R., Liu, Y.-F., Wang, G.: The stability of predator–prey systems subject to the Allee effects. Theor. Popul. Biol. 67, 23–31 (2005)

    Article  MATH  Google Scholar 

  99. Zhou, S.-R., Wang, G.: Allee-like effects in metapopulation dynamics. Math. Biosci. 189, 103–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  100. Zu, J., Mimura, M., Wakano, J.-Y.: The evolution of phenotypic traits in a predator–prey system subject to Allee effect. J. Theor. Biol. 262, 528–543 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The project is supported by the National Natural Science Foundation of China under Grant 11301490, 131 Talents of Shanxi University, Program for the Outstanding Innovative Teams (OIT) of Higher Learning Institutions of Shanxi and International Exchange Program of Postdoctor in Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Quan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GQ. Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn 85, 1–12 (2016). https://doi.org/10.1007/s11071-016-2671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2671-y

Keywords

Navigation