Abstract
During 2011 the LHCb experiment at CERN collected 1.0 fb−1 of \(\sqrt{s} = 7\mbox{~TeV}\) pp collisions. Due to the large heavy quark production cross-sections, these data provide unprecedented samples of heavy flavoured hadrons. The first results from LHCb have made a significant impact on the flavour physics landscape and have definitively proved the concept of a dedicated experiment in the forward region at a hadron collider. This document discusses the implications of these first measurements on classes of extensions to the Standard Model, bearing in mind the interplay with the results of searches for on-shell production of new particles at ATLAS and CMS. The physics potential of an upgrade to the LHCb detector, which would allow an order of magnitude more data to be collected, is emphasised.
Similar content being viewed by others
1 Introduction
During 2011 the LHCb experiment [1] at CERN collected 1.0 fb−1 of \(\sqrt{s} = 7 ~\mathrm{TeV} \)
pp collisions. Due to the large production cross-section, in the LHCb acceptance [2], with the comparable number for charm production about 20 times larger [3, 4], these data provide unprecedented samples of heavy flavoured hadrons. The first results from LHCb have made a significant impact on the flavour physics landscape and have definitively proved the concept of a flavour physics experiment in the forward region at a hadron collider.
The physics objectives of the first phase of LHCb were set out prior to the commencement of data taking in the “roadmap document” [5]. They centred on six main areas, in all of which LHCb has by now published its first results: (i) the tree-level determination of γ [6,