Skip to main content
Log in

Bayesian fit of exclusive b → s \( \overline \ell \) decays: the standard model operator basis

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a model-independent fit of the short-distance couplings C 7,9,10 within the Standard Model set of b → sγ and b → s \( \overline \ell \)ℓ operators. Our analysis of B → K γ, B → K (∗) \( \overline \ell \)ℓ and B s → μμ decays is the first to harness the full power of the Bayesian approach: all major sources of theory uncertainty explicitly enter as nuisance parameters. Exploiting the latest measurements, the fit reveals a flipped-sign solution in addition to a Standard-Model-like solution for the couplings C i. Each solution contains about half of the posterior probability, and both have nearly equal goodness of fit. The Standard Model prediction is close to the best-fit point. No New Physics contributions are necessary to describe the current data. Benefitting from the improved posterior knowledge of the nuisance parameters, we predict ranges for currently unmeasured, optimized observables in the angular distributions of B → K (→ Kπ) \( \overline \ell \)ℓ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CLEO collaboration, T. Coan et al., Study of exclusive radiative B meson decays, Phys. Rev. Lett. 84 (2000) 5283 [hep-ex/9912057] [INSPIRE].

    Article  ADS  Google Scholar 

  2. BABAR collaboration, B. Aubert et al., Measurement of the BX s+ branching fraction with a sum over exclusive modes, Phys. Rev. Lett. 93 (2004) 081802 [hep-ex/0404006] [INSPIRE].

    Article  ADS  Google Scholar 

  3. BABAR collaboration, B. Aubert et al., Measurements of branching fractions, rate asymmetries and angular distributions in the rare decays BK+ and BK +, Phys. Rev. D 73 (2006) 092001 [hep-ex/0604007] [INSPIRE].

    ADS  Google Scholar 

  4. BABAR collaboration, B. Aubert et al., Angular distributions in the decays BK +, Phys. Rev. D 79 (2009) 031102 [arXiv:0804.4412] [INSPIRE].

    ADS  Google Scholar 

  5. BABAR collaboration, B. Aubert et al., Measurement of time-dependent CP asymmetry in B 0\( K_S^0 \)π0γ decays, Phys. Rev. D 78 (2008) 071102 [arXiv:0807.3103] [INSPIRE].

    ADS  Google Scholar 

  6. BABAR collaboration, B. Aubert et al., Direct CP, lepton flavor and isospin asymmetries in the decays BK (∗)+, Phys. Rev. Lett. 102 (2009) 091803 [arXiv:0807.4119] [INSPIRE].

    Article  ADS  Google Scholar 

  7. BABAR collaboration, B. Aubert et al., Measurement of branching fractions and CP and Isospin Asymmetries in BK (892)γ decays, Phys. Rev. Lett. 103 (2009) 211802 [arXiv:0906.2177] [INSPIRE].

    Article  ADS  Google Scholar 

  8. BABAR collaboration, Measurement of branching fractions and rate asymmetries in the rare decays BK (∗) l + l , Phys. Rev. D (2012) [arXiv:1204.3933] [INSPIRE].

  9. BaBar collaboration, V. Poireau, A selection of recent results from the BaBar experiment, arXiv:1205.2201 [INSPIRE].

  10. BELLE collaboration, M. Nakao et al., Measurement of the BK γ branching fractions and asymmetries, Phys. Rev. D 69 (2004) 112001 [hep-ex/0402042] [INSPIRE].

    ADS  Google Scholar 

  11. Belle collaboration, M. Iwasaki et al., Improved measurement of the electroweak penguin process BX s+, Phys. Rev. D 72 (2005) 092005 [hep-ex/0503044] [INSPIRE].

    ADS  Google Scholar 

  12. Belle collaboration, Y. Ushiroda et al., Time-dependent CP asymmetries in B 0K sπ0γ transitions, Phys. Rev. D 74 (2006) 111104 [hep-ex/0608017] [INSPIRE].

    ADS  Google Scholar 

  13. BELLE collaboration, J.-T. Wei et al., Measurement of the differential branching fraction and forward-backword asymmetry for BK (∗)+, Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].

    Article  ADS  Google Scholar 

  14. CDF collaboration, T. Aaltonen et al., Measurement of the forward-backward asymmetry in the BK (∗) μ + μ decay and first observation of the \( B_S^0 \)v → φμ + μ decay, Phys. Rev. Lett. 106 (2011)161801 [arXiv:1101.1028] [INSPIRE].

    Article  ADS  Google Scholar 

  15. CDF collaboration, T. Aaltonen et al., Observation of the baryonic flavor-changing neutral current decay Λb → Λμ + μ , Phys. Rev. Lett. 107 (2011) 201802 [arXiv:1107.3753] [INSPIRE].

    Article  ADS  Google Scholar 

  16. CDF collaboration, T. Aaltonen et al., Measurements of the angular distributions in the decays BK (∗) μ + μ at CDF, Phys. Rev. Lett. 108 (2012) 081807 [arXiv:1108.0695] [INSPIRE].

    Article  ADS  Google Scholar 

  17. LHCb collaboration, R. Aaij et al., Differential branching fraction and angular analysis of the decay B 0K ∗0 μ + μ , Phys. Rev. Lett. 108 (2012) 181806 [arXiv:1112.3515] [INSPIRE].

    Article  ADS  Google Scholar 

  18. LHCb collaboration, Differential branching fraction and angular analysis of the B 0 → K ∗0μ + μ decay, LHCb-CONF-2012-008 (2012).

  19. D0 collaboration, V.M. Abazov et al., Search for the rare decay B sμ + μ , Phys. Lett. B 693 (2010)539 [arXiv:1006.3469] [INSPIRE].

    Article  ADS  Google Scholar 

  20. CDF collaboration, T. Aaltonen et al., Search for B sμ + μ and B dμ + μ decays with CDF II, Phys. Rev. Lett. 107 (2011) 239903 [arXiv:1107.2304] [INSPIRE].

    Article  ADS  Google Scholar 

  21. CDF collaboration, H. Miyake, Heavy flavor physics at the TevatronCentered on B s physics, presented at Rencontres de Moriond, February 26-March 3, La Thuile, Aosta, Italy (2012).

  22. LHCb collaboration, R. Aaij et al., Search for the rare decays B sμ + μ and B 0μ + μ , Phys. Lett. B 708 (2012) 55 [arXiv:1112.1600] [INSPIRE].

    Article  ADS  Google Scholar 

  23. LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].

    Article  ADS  Google Scholar 

  24. CMS collaboration, S. Chatrchyan et al., Search for B s and B to dimuon decays in pp collisions at 7 TeV, Phys. Rev. Lett. 107 (2011) 191802 [arXiv:1107.5834] [INSPIRE].

    Article  ADS  Google Scholar 

  25. CMS collaboration, S. Chatrchyan et al., Search for \( B_S^0 \)μ + μ and B 0μ + μ decays, JHEP 04 (2012) 033 [arXiv:1203.3976] [INSPIRE].

    Article  ADS  Google Scholar 

  26. ATLAS collaboration, G. Aad et al., Search for the decay \( B_S^0 \)μμ with the ATLAS detector, Phys. Lett. B 713 (2012) 387 [arXiv:1204.0735] [INSPIRE].

    Article  ADS  Google Scholar 

  27. LHCb collaboration, B. Adeva et al., Roadmap for selected key measurements of LHCb, arXiv:0912.4179 [INSPIRE].

  28. K.G. Chetyrkin, M. Misiak and M. Münz, Weak radiative B meson decay beyond leading logarithms, Phys. Lett. B 400 (1997) 206 [Erratum ibid. B 425 (1998) 414] [hep-ph/9612313] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Misiak et al., Estimate of B( BX sγ) at \( O\left( {\alpha_s^2} \right) \) , Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline B \)X sγ matrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of \( \overline B \)Xsℓ+ and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].

    Article  ADS  Google Scholar 

  32. T. Huber, E. Lunghi, M. Misiak and D. Wyler, Electromagnetic logarithms in \( \overline B \)X s+, Nucl. Phys. B 740 (2006) 105 [hep-ph/0512066] [INSPIRE].

    Article  ADS  Google Scholar 

  33. T. Huber, T. Hurth and E. Lunghi, Logarithmically enhanced corrections to the decay rate and forward backward asymmetry in B → X s+, Nucl. Phys. B 802 (2008) 40 [arXiv:0712.3009] [INSPIRE].

    Article  ADS  Google Scholar 

  34. C. Greub, V. Pilipp and C. Schupbach, Analytic calculation of two-loop QCD corrections to b → s+ in the high Q 2 region,JHEP 12 (2008) 040 [arXiv:0810.4077] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Aushev et al., Physics at SuperB factory, arXiv:1002.5012 [INSPIRE].

  36. SuperB collaboration, B. O’Leary et al., SuperB progress reportsPhysics, arXiv:1008.1541 [INSPIRE].

  37. C. Bobeth, G. Hiller and D. van Dyk, Angular analysis of B → V (→ P 1 P 2)l + l decays, J. Phys. Conf. Ser. 335 (2011) 012038 [arXiv:1105.2659] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → V+ , V γ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S.W. Bosch and G. Buchalla, The radiative decays B → V γ at next-to-leading order in QCD, Nucl. Phys. B 621 (2002) 459 [hep-ph/0106081] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak b → d and b → s penguin decays at NLO,Eur. Phys. J. C 41 (2005)173 [hep-ph/0412400] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Khodjamirian, T. Mannel, A. Pivovarov and Y.-M. Wang, Charm-loop effect in B → K (∗)+ and B → K γ,JHEP 09 (2010)089 [arXiv:1006.4945][INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Ali, G. Kramer and G.-h. Zhu, BK + decay in soft-collinear effective theory, Eur. Phys. J. C 47 (2006) 625 [hep-ph/0601034] [INSPIRE].

    Article  ADS  Google Scholar 

  43. K.S. Lee, Z. Ligeti, I.W. Stewart and F.J. Tackmann, Extracting short distance information from b → s+ effectively, Phys. Rev. D 75 (2007) 034016 [hep-ph/0612156] [INSPIRE].

    ADS  Google Scholar 

  44. B. Grinstein and D. Pirjol, Exclusive rare B → K + decays at low recoil: controlling the long-distance effects, Phys. Rev. D 70 (2004) 114005 [hep-ph/0404250] [INSPIRE].

    ADS  Google Scholar 

  45. M. Beylich, G. Buchalla and T. Feldmann, Theory of B → K (∗)+ decays at high q 2 : OPE and quark-hadron duality, Eur. Phys. J. C 71 (2011) 1635 [arXiv:1101.5118] [INSPIRE].

    Article  ADS  Google Scholar 

  46. N. Isgur and M.B. Wise, Relationship between form-factors in semileptonic \( \overline B \) and D decays and exclusive rare \( \overline B \) meson decays, Phys. Rev. D 42 (1990) 2388 [INSPIRE].

    ADS  Google Scholar 

  47. J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J. Raynal, Heavy to light form-factors in the heavy mass to large energy limit of QCD, Phys. Rev. D 60 (1999) 014001 [hep-ph/9812358] [INSPIRE].

    ADS  Google Scholar 

  48. M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to light B meson form-factors at large recoil, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255] [INSPIRE].

    ADS  Google Scholar 

  49. B. Grinstein and D. Pirjol, Symmetry breaking corrections to heavy meson form-factor relations, Phys. Lett. B 533 (2002) 8 [hep-ph/0201298] [INSPIRE].

    Article  ADS  Google Scholar 

  50. F. Krüger, L.M. Sehgal, N. Sinha and R. Sinha, Angular distribution and CP asymmetries in the decays B → K − π + e − e + and B → π − pi + e − e+,Phys. Rev. D 61 (2000)114028 [Erratum ibid. D 63 (2001) 019901] [hep-ph/9907386] [INSPIRE].

    ADS  Google Scholar 

  51. F. Krüger and J. Matias, Probing new physics via the transverse amplitudes of B 0 → K ∗0(→ K π+)ℓ+ at large recoil, Phys. Rev. D 71 (2005) 094009 [hep-ph/0502060] [INSPIRE].

    ADS  Google Scholar 

  52. C. Bobeth, G. Hiller and G. Piranishvili, CP asymmetries in \( \overline B \) \( \overline K \) ∗(→ \( \overline K \) π) \( \overline \ell \) ℓ and untagged \( \overline B \) s, Bs → φ(→ K + K ) \( \overline \ell \) ℓ decays at NLO, JHEP 07 (2008) 106 [arXiv:0805.2525] [INSPIRE].

    Article  ADS  Google Scholar 

  53. U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New observables in the decay mode B d → K ∗0+, JHEP 11 (2008) 032 [arXiv:0807.2589] [INSPIRE].

    Article  ADS  Google Scholar 

  54. W. Altmannshofer et al., Symmetries and asymmetries of B → K μ + μ decays in the standard model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].

    Article  ADS  Google Scholar 

  55. A. Bharucha and W. Reece, Constraining new physics with B → K μ + μ in the early LHC era, Eur. Phys. J. C 69 (2010) 623 [arXiv:1002.4310] [INSPIRE].

    Article  ADS  Google Scholar 

  56. U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New physics reach of the decay mode \( \overline B \) → \( \overline K \) ∗0+, JHEP 10 (2010) 056 [arXiv:1005.0571] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Bobeth, G. Hiller and D. van Dyk, The benefits of \( \overline B \)\( \overline K \) l + l decays at low recoil, JHEP 07 (2010) 098 [arXiv:1006.5013] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A.K. Alok et al., New physics in b →  + μ : CP-conserving observables, JHEP 11 (2011) 121 [arXiv:1008.2367] [INSPIRE].

    Article  ADS  Google Scholar 

  59. C. Bobeth, G. Hiller and D. van Dyk, More benefits of semileptonic rare B decays at low recoil: CP-violation, JHEP 07 (2011) 067 [arXiv:1105.0376] [INSPIRE].

    Article  ADS  Google Scholar 

  60. D. Becirevic and E. Schneider, On transverse asymmetries in B → K +, Nucl. Phys. B 854 (2012)321 [arXiv:1106.3283] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J. Matias, F. Mescia, M. Ramon and J. Virto, Complete anatomy of \( \overline B \) d − > K∗0(→Kπ)l + l − and its angular distribution, JHEP 04(2012)104 [arXiv:1202.4266] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C. Bobeth, T. Ewerth, F. Krüger and J. Urban, Analysis of neutral Higgs boson contributions to the decays \( \overline B \) s → ℓ + ℓ − and \( \overline B \) → Kℓ + ℓ−, Phys. Rev. D 64 (2001) 074014 [hep-ph/0104284] [INSPIRE].

    ADS  Google Scholar 

  63. C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of \( \overline B \) → K \( \overline l \) l decays,JHEP 12 (2007)040 [arXiv:0709.4174] [INSPIRE].

    Article  ADS  Google Scholar 

  64. C. Bobeth, G. Hiller, D. van Dyk and C. Wacker, The decay B → Kl + l at low hadronic recoil and model-independent ΔB = 1 constraints , JHEP 01 (2012) 107 [arXiv:1111.2558] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Descotes-Genon, D. Ghosh, J. Matias and M. Ramon, Exploring new physics in the \( C7 - C_7^\prime \) plane, JHEP 06 (2011) 099 [arXiv:1104.3342] [INSPIRE].

    Article  ADS  Google Scholar 

  66. W. Altmannshofer, P. Paradisi and D.M. Straub, Model-independent constraints on new physics in b → s transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].

    Article  ADS  Google Scholar 

  67. EOS collaboration, D. van Dyk et al., http://project.het.physik.tu-dortmund.de/eos/.

  68. C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m t dependence of BR[B → X s+], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. Misiak and M. Steinhauser, Three loop matching of the dipole operators for b → sγ and b → sg,Nucl. Phys. B 683 (2004)277 [hep-ph/0401041][INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Gorbahn and U. Haisch, Effective Hamiltonian for non-leptonic |ΔF | = 1 decays at NNLO in QCD, Nucl. Phys. B 713 (2005) 291 [hep-ph/0411071] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Gorbahn, U. Haisch and M. Misiak, Three-loop mixing of dipole operators, Phys. Rev. Lett. 95 (2005) 102004 [hep-ph/0504194] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Czakon, U. Haisch and M. Misiak, Four-loop anomalous dimensions for radiative flavour-changing decays, JHEP 03 (2007) 008 [hep-ph/0612329] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A.J. Buras, P. Gambino and U.A. Haisch, Electroweak penguin contributions to nonleptonic ΔF = 1 decays at NNLO, Nucl. Phys. B 570 (2000) 117 [hep-ph/9911250] [INSPIRE].

    Article  ADS  Google Scholar 

  74. P. Gambino and U. Haisch, Complete electroweak matching for radiative B decays, JHEP 10 (2001)020 [hep-ph/0109058] [INSPIRE].

    Article  ADS  Google Scholar 

  75. F. Borzumati, C. Greub, T. Hurth and D. Wyler, Gluino contribution to radiative B decays: organization of QCD corrections and leading order results, Phys. Rev. D 62 (2000) 075005 [hep-ph/9911245] [INSPIRE].

    ADS  Google Scholar 

  76. G. Hiller and F. Krüger, More model independent analysis of b → s processes, Phys. Rev. D 69 (2004)074020 [hep-ph/0310219] [INSPIRE].

    ADS  Google Scholar 

  77. C. Bobeth and U. Haisch, New physics in \( \Gamma_{12}^s \) : ( \( \overline s \) b) ( \( \overline \tau \)τ ) operators, arXiv:1109.1826 [INSPIRE].

  78. F. Muheim, Y. Xie and R. Zwicky, Exploiting the width difference in B s → φγ, Phys. Lett. B 664 (2008) 174 [arXiv:0802.0876] [INSPIRE].

    Article  ADS  Google Scholar 

  79. E. Kou, A. Le Yaouanc and A. Tayduganov, Determining the photon polarization of the b → sγ using the B → K 1(1270)γ → (Kππ)γ decay,Phys. Rev. D 83 (2011) 094007 [arXiv:1011.6593] [INSPIRE].

    ADS  Google Scholar 

  80. A. Tayduganov, E. Kou and A. Le Yaouanc, The strong decays of K 1 resonances, Phys. Rev. D 85 (2012) 074011 [arXiv:1111.6307] [INSPIRE].

    ADS  Google Scholar 

  81. T. Feldmann and J. Matias, Forward backward and isospin asymmetry for B → K + decay in the standard model and in supersymmetry, JHEP 01 (2003) 074 [hep-ph/0212158] [INSPIRE].

    Article  ADS  Google Scholar 

  82. C. Hambrock and G. Hiller, Extracting B → K form factors from data, arXiv:1204.4444 [INSPIRE].

  83. K. de Bruyn et al., A new window for new physics in \( B_s^0 \)μ + μ , arXiv:1204.1737 [INSPIRE].

  84. LHCb collaboration, Tagged time-dependent angular analysis of \( B_s^0 \)J/ψφ decays at LHCb, LHCb-CONF-2012-002 (2012).

  85. LHCb collaboration, R. Aaij et al., Determination of the sign of the decay width difference in the B s system, Phys. Rev. Lett. 108 (2012) 241801 [arXiv:1202.4717] [INSPIRE].

    Article  ADS  Google Scholar 

  86. F. Beaujean, A Bayesian analysis of rare B decays with advanced Monte Carlo methods, Ph.D. thesis, to appear (2012).

  87. A. Gelman and D.B. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci. 7 (1992) 457.

    Article  Google Scholar 

  88. J. Goldberger and S. Roweis, Hierarchical clustering of a mixture model, Adv. Neur. In. 17 (2004)505.

    Google Scholar 

  89. O. Cappé, R. Douc, A. Guillin, J.-M. Marin and C.P. Robert, Adaptive importance sampling in general mixture classes, Stat. Comput. 18 (2008) 447 [arXiv:0710.4242].

    Article  MathSciNet  Google Scholar 

  90. D. Wraith et al., Estimation of cosmological parameters using adaptive importance sampling, Phys. Rev. D 80 (2009) 023507 [arXiv:0903.0837] [INSPIRE].

    ADS  Google Scholar 

  91. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  92. UTfit collaboration, M. Bona et al., The unitarity triangle fit in the standard model and hadronic parameters from lattice QCD: a reappraisal after the measurements of Δm s and BR(B → τντ ), JHEP 10 (2006) 081 [hep-ph/0606167] [INSPIRE].

    Google Scholar 

  93. E.T. Jaynes and G.L. Bretthorst, Probability theory, Cambridge University Press, Cambridge U.K. (2003).

  94. A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  95. R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [INSPIRE].

    Article  Google Scholar 

  96. H. Flacher et al., Revisiting the global electroweak fit of the standard model and beyond with Gfitter, Eur. Phys. J. C 60 (2009) 543 [Erratum ibid. C 71 (2011) 1718] [arXiv:0811.0009] [INSPIRE].

    Article  ADS  Google Scholar 

  97. W.R. Reece, Exploiting angular correlations in the rare decay B → K μ + μ at LHCb, CERN-THESIS-2010-095 (2010).

  98. J. Heinrich, GENLIMIT software package, CDF-MEMO-7587 (2005)

  99. G.E. Crooks, The Amoroso distribution, arXiv:1005.3274.

  100. F. Beaujean, A. Caldwell, D. Kollar and K. Kröninger, p-values for model evaluation, Phys. Rev. D 83 (2011) 012004 [INSPIRE].

    ADS  Google Scholar 

  101. C. Bobeth, G Hiller and D. van Dyk, General analysis of optimal observables in B → K (→Kπ)ℓ + at low recoil,toappear.

  102. CDF and D0 collaboration, T.E.W. Group, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [INSPIRE].

  103. Fermilab Lattice and MILC collaboration, J. Simone et al., The decay constants f (D s), f (D +), f (B s) and f (B) from lattice QCD, PoS(LATTICE 2010)317.

  104. C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, High-precision fBs and HQET from relativistic lattice QCD, Phys. Rev. D 85 (2012) 031503 [arXiv:1110.4510] [INSPIRE].

    ADS  Google Scholar 

  105. Fermilab Lattice and MILC Collaborations collaboration, A. Bazavov et al., B-and D-meson decay constants from three-flavor lattice QCD, Phys. Rev. D 85 (2012) 114506 [arXiv:1112.3051] [INSPIRE].

    ADS  Google Scholar 

  106. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  107. P. Ball and R. Zwicky, B d,s → ρ, ω, K , φ decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].

    ADS  Google Scholar 

  108. CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].

    Article  ADS  Google Scholar 

  109. D. Becirevic, V. Lubicz and F. Mescia, An estimate of the B → K γ form factor, Nucl. Phys. B 769 (2007) 31 [hep-ph/0611295] [INSPIRE].

    Article  ADS  Google Scholar 

  110. QCDSF collaboration, A. Al-Haydari et al., Semileptonic form factors D → π, K and B→π, K from a fine lattice,Eur. Phys. J. A 43 (2010)107 [arXiv:0903.1664][INSPIRE].

    Article  ADS  Google Scholar 

  111. Z. Liu et al., Form factors for rare B decays: strategy, methodology and numerical study, PoS(LAT2009)242 [arXiv:0911.2370] [INSPIRE].

  112. Fermilab Lattice, MILC collaboration, R. Zhou et al., Form factors for B → K ℓℓ semileptonic decay from three-flavor lattice QCD, PoS(LATTICE 2011)298 [arXiv:1111.0981] [INSPIRE].

  113. Z. Liu et al., A lattice calculation of B → K (∗) form factors, arXiv:1101.2726 [INSPIRE].

  114. A. Bharucha, T. Feldmann and M. Wick, Theoretical and phenomenological constraints on form factors for radiative and semi-leptonic B-meson decays, JHEP 09 (2010) 090 [arXiv:1004.3249] [INSPIRE].

    Article  ADS  Google Scholar 

  115. C. Bourrely, I. Caprini and L. Lellouch, Model-independent description of B → πlν decays and a determination of |V ub |, Phys. Rev. D 79 (2009) 013008 [Erratum ibid. D 82 (2010) 099902] [arXiv:0807.2722] [INSPIRE].

    ADS  Google Scholar 

  116. A.L. Kagan and M. Neubert, Isospin breaking in B → K γ decays, Phys. Lett. B 539 (2002) 227 [hep-ph/0110078] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny van Dyk.

Additional information

ArXiv ePrint: 1205.1838

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaujean, F., Bobeth, C., van Dyk, D. et al. Bayesian fit of exclusive b → s \( \overline \ell \) decays: the standard model operator basis. J. High Energ. Phys. 2012, 30 (2012). https://doi.org/10.1007/JHEP08(2012)030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)030

Keywords

Navigation