Skip to main content
Log in

Green–Kubo formula for Boltzmann and Fermi–Dirac statistics

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Shear viscosity of nuclear matter is extracted via the Green–Kubo formula and the Gaussian thermostated SLLOD algorithm (the shear rate method) in a periodic box by using an improved quantum molecular dynamic (ImQMD) model without mean field, also it is calculated by a Boltzmann-type equation. Here a new form of the Green–Kubo formula is put forward in the present work. For classical limit at nuclear matter densities of \(0.4\rho _{0}\) and \(1.0\rho _{0}\), shear viscosity by the traditional and new form of the Green–Kubo formula as well as the SLLOD algorithm are coincident with each other. However, for non-classical limit, shear viscosity by the traditional form of the Green–Kubo formula is higher than those obtained by the new form of the Green–Kubo formula as well as the SLLOD algorithm especially in low temperature region. In addition, shear viscosity from the Boltzmann-type equation is found to be less than that by the Green–Kubo method or the SLLOD algorithm for both classical and non-classical limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. M. Prakasha, M. Prakasha, R. Venugopalan, G. Welke, Phys. Rep. 227, 321 (1993)

    Article  ADS  Google Scholar 

  2. C. Hoheisel, Phys. Rep. 245, 111 (1994)

    Article  ADS  Google Scholar 

  3. T. Schaefer, Annu. Rev. Nucl. Part. Sci. 64, 125 (2014)

    Article  ADS  Google Scholar 

  4. Y.-C. Liu, X.-G. Huang, Nucl. Sci. Tech. 31, 56 (2020)

    Article  Google Scholar 

  5. Z.-B. Tang, W.-M. Zha, Y.-F. Zhang, Nucl. Sci. Tech. 31, 81 (2020)

    Article  Google Scholar 

  6. J.-H. Gao, G.-L. Ma, P. Shi, Q. Wang, Nucl. Sci. Tech. 31, 90 (2020)

    Article  Google Scholar 

  7. C. Shen, L. Yan, Nucl. Sci. Tech. 31, 122 (2020)

    Article  MathSciNet  Google Scholar 

  8. E.E. Kolomeitsev, D.N. Voskresensky, Phys. Rev. C 91, 025805 (2015)

    Article  ADS  Google Scholar 

  9. Q.-L. Cao, D.-H. Huang, J.-S. Yang et al., Chin. Phys. Lett. 37, 076201 (2020)

    Article  ADS  Google Scholar 

  10. G. Bertsch, Z. Phys. A 289, 103 (1978)

    Article  ADS  Google Scholar 

  11. P. Danielewicz, Phys. Lett. B 146, 168 (1984)

    Article  ADS  Google Scholar 

  12. L. Shi, P. Danielewicz, Phys. Rev. C 68, 064604 (2003)

    Article  ADS  Google Scholar 

  13. A. Muronga, Phys. Rev. C 69, 044901 (2004)

    Article  ADS  Google Scholar 

  14. P. Kovtun, T.D. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    Article  ADS  Google Scholar 

  15. R.A. Lacey, N.N. Ajitanand, J.M. Alexander et al., Phys. Rev. Lett. 98, 092301 (2007)

    Article  ADS  Google Scholar 

  16. I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A 757, 1 (2005)

  17. B.B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A 757, 28 (2005)

  18. J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005)

  19. U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013)

    Article  ADS  Google Scholar 

  20. H. Song, Y. Zhou, K. Gajdosova, Nucl. Sci. Tech. 28, 99 (2017)

    Article  Google Scholar 

  21. F. Reining, I. Bouras, A. El, C. Wesp, Z. Xu, C. Greiner, Phys. Rev. E 85, 026302 (2012)

    Article  ADS  Google Scholar 

  22. Y.G. Ma (ed.), New progress in nuclear physics (Shanghai Jiaotong University Press, Shanghai, 2020)

    Google Scholar 

  23. S. Plumari, A. Puglisi, F. Scardina et al., Phys. Rev. C 86, 054902 (2012)

    Article  ADS  Google Scholar 

  24. A. Wiranata, M. Prakash, Phys. Rev. C 85, 054908 (2012)

    Article  ADS  Google Scholar 

  25. J. Xu, L.W. Chen, C.M. Ko, B.A. Li, Y.G. Ma, Phys. Lett. B 727, 244 (2013)

    Article  ADS  Google Scholar 

  26. C.J. Horowitz, D.K. Berry, Phys. Rev. C 78, 035806 (2008)

    Article  ADS  Google Scholar 

  27. R. Nandi, S. Schramm, J. Astrophys. Astron. 39, 40 (2018)

    Article  ADS  Google Scholar 

  28. D.Q. Fang, Y.G. Ma, C.L. Zhou, Phys. Rev. C 89, 047601 (2014)

    Article  ADS  Google Scholar 

  29. H.L. Liu, Y.G. Ma, A. Bonasera, X.G. Deng, O. Lopez, M. Veselský, Phys. Rev. C 96, 064604 (2017)

    Article  ADS  Google Scholar 

  30. N.D. Dang, Phys. Rev. C 84, 034309 (2011)

    Article  ADS  Google Scholar 

  31. N. Auerbach, S. Shlomo, Phys. Rev. Lett. 103, 172501 (2009)

    Article  ADS  Google Scholar 

  32. C.Q. Guo, Y.G. Ma, W.B. He et al., Phys. Rev. C 95, 054622 (2017)

    Article  ADS  Google Scholar 

  33. D. Mondal, D. Pandit, S. Mukhopadhyay et al., Phys. Rev. Lett. 118, 192501 (2017)

    Article  ADS  Google Scholar 

  34. S. Bhattacharya, D. Pandit, B. Dey, D. Mondal, S. Mukhopadhyay, S. Pal, A. De, S.R. Banerjee, Phys. Rev. C 103, 014305 (2021)

    Article  ADS  Google Scholar 

  35. S. Pal, Phys. Rev. C 81, 051601(R) (2010)

    Article  ADS  Google Scholar 

  36. X.G. Deng, Y.G. Ma, M. Veselský, Phys. Rev. C 94, 044622 (2016)

    Article  ADS  Google Scholar 

  37. C.L. Zhou, Y.G. Ma, D.Q. Fang et al., Phys. Rev. C 88, 024604 (2013)

    Article  ADS  Google Scholar 

  38. G. Pan, J.F. Elya, C. McCabe, J. Chem. Phys. 122, 094114 (2005)

    Article  ADS  Google Scholar 

  39. M. Mouas, J.-G. Gasser, S. Hellal, B. Grosdidier, A. Makradi, S. Belouettar, J. Chem. Phys. 136, 094501 (2012)

    Article  ADS  Google Scholar 

  40. Y. Zhang, A. Otani, E.J. Maginn, J. Chem. Theory Comput. 11, 8 (2015)

    Article  Google Scholar 

  41. G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)

    Article  ADS  Google Scholar 

  42. J. Aichelin, Phys. Rep. 202, 233 (1991)

    Article  ADS  Google Scholar 

  43. B.-A. Li, L.-W. Chen, C. M. Ko, Phys. Rep. 464, 113 (2008)

  44. A. Ono, Prog. Part. Nucl. Phys. 105, 139 (2019)

    Article  ADS  Google Scholar 

  45. J. Xu, Prog. Part. Nucl. Phys. 106, 312 (2019)

  46. J. Xu et al., Phys. Rev. C 93, 044609 (2016)

  47. Y.-X. Zhang et al., Phys. Rev. C 97, 034625 (2018)

    Article  ADS  Google Scholar 

  48. B.-A. Li, B.-J. Cai, L.-W. Chen, J. Xu, Prog. Part. Nucl. Phys. 99, 29 (2018)

  49. M. Colonna, Prog. Part. Nucl. Phys. 113, 103775 (2020)

    Article  Google Scholar 

  50. G. Giuliani, H. Zheng, A. Bonasera, Prog. Part. Nucl. Phys. 76, 116 (2014)

    Article  ADS  Google Scholar 

  51. C.-W. Ma, Y.-G. Ma, Prog. Part. Nucl. Phys. 99, 120 (2018)

    Article  ADS  Google Scholar 

  52. S.X. Li, D.Q. Fang, Y.G. Ma et al., Phys. Rev. C 84, 024607 (2011)

    Article  ADS  Google Scholar 

  53. W.B. He, Y.G. Ma, X.G. Cao, X.Z. Cai, G.Q. Zhang, Phys. Rev. Lett. 113, 032506 (2014)

    Article  ADS  Google Scholar 

  54. G.-F. Wei, Q.-J. Zhi, X.-W. Cao, Z.-W. Long, Nucl. Sci. Tech. 31, 71 (2020)

    Article  Google Scholar 

  55. F. Zhang, J. Su, Nucl. Sci. Tech. 31, 77 (2020)

  56. H. Yu, D.-Q. Fang, Y.-G. Ma, Nucl. Sci. Tech. 31, 61 (2020)

  57. T.-Z. Yan, S. Li, Y.-N. Wang et al., Nucl. Sci. Tech. 30, 15 (2019)

    Article  Google Scholar 

  58. S.S. Wang, Y.G. Ma, X.G. Cao et al., Phys. Rev. C 102, 024620 (2020)

    Article  ADS  Google Scholar 

  59. Y.J. He, C.C. Guo, J. Su et al., Nucl. Sci. Tech. 31, 84 (2020)

    Article  Google Scholar 

  60. Y.-X. Zhang, Z.-X. Li, Phys. Rev. C 74, 014602 (2006)

    Article  ADS  Google Scholar 

  61. N. Wang et al., J. Phys. G Nucl. Part. Phys. 43, 065101 (2016)

    Article  ADS  Google Scholar 

  62. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  63. A. Hosoya, M.A. Sakagami, M. Takao, Ann. Phys. 154, 229 (1984)

    Article  ADS  Google Scholar 

  64. D.J. Evans, G. Morris, Statistical Mechanics of Nonequilibrium Liquids (Cambridge University, 2008)

  65. G. Pan, C. McCabe, J. Chem. Phys. 125, 194527 (2006)

    Article  ADS  Google Scholar 

  66. B. Barker, P. Danielewicz, Phys. Rev. C 99, 034607 (2019)

    Article  ADS  Google Scholar 

  67. Y. Kikuchi, K. Tsumura, T. Kunihiro, Phys. Lett. A 380, 2075 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  68. D.J. Evans, D.J. Searles, Phys. Rev. E 53, 5808 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks for helpful discussions with P. Danielewicz and H. Lin. This work was partially supported by the National Natural Science Foundation of China under Contract Nos. 11947217, 11890710 and 11890714, China Postdoctoral Science Foundation Grant No. 2019M661332, Postdoctoral Innovative Talent Program of China No. BX20200098, the Strategic Priority Research Program of the CAS under Grants No. XDB34000000, the Guangdong Major Project of Basic and Applied Basic Research No. 2020B0301030008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Ma.

Additional information

Communicated by Evgeni Kolomeitsev.

Appendices

Appendix A: The Green–Kubo formula for shear viscosity

The particle density can be written as (for simplicity, here we use \(\delta \)-function to replace the Gaussian wave-packet). And the derivation of the Green–Kubo formula for shear viscosity is tedious. Here we give a simple introduction which is based on Ref. [64]. For more details one can find in Refs. [64, 68].

A.1 \(\vec {\mathbf{r}}\) and \(\vec {\mathbf{k}}\)-space representations

The streaming velocity, mass density, momentum density and stress tensor at position \(\vec {\mathbf{r}}\) and time t can be written:

$$\begin{aligned}&\mathbf{u} (\vec {\mathbf{r}},t)=\frac{\sum _{i}^{N} m_{i} {\dot{\vec {\mathbf{r}}}_{ {i}}} \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{i})}{\sum _{i}^{N} m_{i} \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{i})},\end{aligned}$$
(A1)
$$\begin{aligned}&\rho (\vec {\mathbf{r}},t)=\sum _{i}^{N} m_{i} \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{i}), \end{aligned}$$
(A2)
$$\begin{aligned}&J(\vec {\mathbf{r}},t)=\rho (\vec {\mathbf{r}},t)\mathbf{u} (\vec {\mathbf{r}},t)=\sum _{i}^{N} m_{i} {\dot{\vec {\mathbf{r}}}_{ {i}}} \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{i}), \\ P_{\alpha \beta }(\vec {\mathbf{r}},t)&=\sum _{i}^{N} \frac{p_{{i}\alpha }p_{{i}\beta }}{m_{i}} \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{i}) \nonumber \end{aligned}$$
(A3)
$$\begin{aligned}&+\frac{1}{2} \sum _{i}^{N} \sum _{i\ne j}^{N} F_{ij\alpha }R_{ij\beta } \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{j}) \\ \nonumber&+\ldots , \end{aligned}$$
(A4)

where ‘i’ and ‘j’ are indexes of particles and N is particle number. For Eq. (A4), the momentum density conservation law

$$\begin{aligned} \frac{\partial J(\vec {\mathbf{r}},t)}{\partial t } = -\nabla _\mathbf{r} \cdot \vec {P}, \end{aligned}$$
(A5)

is needed. Moreover it needs

$$\begin{aligned}&\frac{\partial }{\partial \vec {\mathbf{r}}_{ {i}} } \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{i})= - \frac{\partial }{\partial \vec {\mathbf{r}} } \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{i}), \end{aligned}$$
(A6)
$$\begin{aligned}&\delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{i}) -\delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{j})\approx \vec {R}_{ij}\frac{\partial }{\partial \vec {\mathbf{r}} } \delta (\vec {\mathbf{r}}-\vec {\mathbf{r}}_{j}). \end{aligned}$$
(A7)

One can define the Fourier transform and inverse in three-dimensions by

$$\begin{aligned}&f(\vec {\mathbf{k}}) = \int d^{3}{} \mathbf{r} f(\vec {\mathbf{r}}) \mathrm{exp} [ \mathrm{i} \vec {\mathbf{k}}\cdot \vec {\mathbf{r}}], \end{aligned}$$
(A8)
$$\begin{aligned}&f(\vec {\mathbf{r}}) = \frac{1}{(2\pi )^{3}}\int d^{3}{} \mathbf{k} f(\vec {\mathbf{k}}) \mathrm{exp} [- \mathrm{i}\vec {\mathbf{k}}\cdot \vec {\mathbf{r}} ], \end{aligned}$$
(A9)

where ‘\(\mathrm{i}\)’ is the unit of imaginary. Then the mass density, momentum density and stress tensor in \(\vec {\mathbf{k}}\)-space are given

$$\begin{aligned}&\rho (\vec {\mathbf{k}},t)={\sum _{i}^{N}} {m_{i}} \mathrm{exp} [ \mathrm{i} \vec {\mathbf{k}}\cdot \vec {\mathbf{r}}_{i} ], \end{aligned}$$
(A10)
$$\begin{aligned}&J(\vec {\mathbf{k}},t)=\sum _{i}^{N} m_{i} {\dot{\vec {\mathbf{r}}}_{ {i}}} \mathrm{exp} [ \mathrm{i} \vec {\mathbf{k}}\cdot \vec {\mathbf{r}}_{i} ], \end{aligned}$$
(A11)
$$\begin{aligned} P_{\alpha \beta }(\vec {\mathbf{k}},t)&=\sum _{i}^{N} \frac{p_{{i}\alpha }p_{{i}\beta }}{m_{i}} \mathrm{exp} [ \mathrm{i} \vec {\mathbf{k}}\cdot \vec {\mathbf{r}}_{i} ] \\ \nonumber&+\frac{1}{2} \sum _{i}^{N} \sum _{i\ne j}^{N} F_{ij\alpha }R_{ij\beta } \mathrm{exp} [ \mathrm{i} \vec {\mathbf{k}}\cdot \vec {\mathbf{r}}_{j} ]+\ldots \; . \end{aligned}$$
(A12)

A.2 Shear viscosity and strain rate

The stress tensor corresponds to the strain rate (for simplicity, only the \(x-y\) component is considered) reads

$$\begin{aligned} {\begin{matrix} P_{xy}=-\eta \gamma (t), \end{matrix}} \end{aligned}$$
(A13)

where \(\eta \) is static shear viscosity. Also one can see it in Eq. (9) but the strain rate here is time dependent. The most general linear relation between the strain rate and the shear stress can be written in the time domain as

$$\begin{aligned} {\begin{matrix} P_{xy}(t)=-\int _{0}^{t} ds \; \eta _{M}(t-s)\gamma (s), \end{matrix}} \end{aligned}$$
(A14)

where \(\eta _{M}(t)\) is called the Maxwell memory function. The memory function explains that the shear stress at time t is not simply linearly proportional to the strain rate at the current time t, but to the entire strain rate process, over times \(0 \leqslant s \leqslant t\). For the frequency dependent Maxwell viscosity is

$$\begin{aligned} \tilde{\eta }_{M}(\omega )= \frac{{\eta }}{1+{\mathrm{i}} \omega \tau _{M}}, \end{aligned}$$
(A15)

where \( \tau _{M}\) is the Maxwell relaxation time which controls the transition frequency between low frequency viscous behaviour and high frequency elastic behavior. In Eq. (A15), \(\tilde{\eta }_{M}\) is the Fourier–Laplace transform which is read as

$$\begin{aligned} \tilde{\eta }(\omega )= {\int _{0}^{\infty }} dt\, {\hbox {exp}}{[}-{\mathrm{i}}\omega t{]} \eta (t). \end{aligned}$$
(A16)

A.3 Shear viscosity of the Green–Kubo formula

We separate vector-dependent momentum density into longitudinal (\(\mathbf{J}^{||}\)) and transverse (\(\mathbf{J}^{\bot }\)) parts. Considering a transverse momentum density \(\mathbf{J}^{\bot }\)(\(\vec {\mathbf{k}}\),t), for simplicity, we define the coordinate system in which \(\vec {\mathbf{k}}\) is in y-direction and \(\mathbf{J}^{\bot }\) is in the x-direction:

$$\begin{aligned} J_{x}(k_{y},t) = \sum _{i}mv_{xi}(t)\mathrm{exp}[\mathrm{i}k_{y}y_{i}(t)]. \end{aligned}$$
(A17)

According to Eq. (A12), one can get

$$\begin{aligned} \dot{J}_{x}(k_{y},t) = \mathrm{i}k_{y}P_{xy}(k_{y},t). \end{aligned}$$
(A18)

In Ref. [64], by Mori–Zwanzig formalism, one can get the shear viscosity \(\eta (t)\) which is time-dependent, i.e.

$$\begin{aligned} \eta (t) = \frac{VNm}{\langle J_{x}(k_{y})J_{x}^{*}(k_{y})\rangle }\langle P_{xy}(t)P_{xy}(0) \rangle . \end{aligned}$$
(A19)

By the Fourier–Laplace transform of \(\eta (t)\), one gets

$$\begin{aligned} \tilde{\eta }(\omega ) = \frac{VNm}{\langle J_{x}(k_{y}=0)J_{x}^{*}(k_{y}=0)\rangle } \\ \times \int _{0}^{\infty }\langle P_{xy}(t)P_{xy}(0) \rangle \mathrm{exp}[-\mathrm{i}\omega t]dt.\nonumber \end{aligned}$$
(A20)

As in Eq. (A15), static shear viscosity needs \(\omega \rightarrow \)0. Then one gets

$$\begin{aligned} \eta = \frac{VNm}{\langle J_{x}(k_{y} = 0) J_{x}^{*}(k_{y} = 0)\rangle } \int _{0}^{\infty }\langle P_{xy}(t)P_{xy}(0) \rangle dt. \end{aligned}$$
(A21)

Here it should be noticed

$$\begin{aligned} P_{xy}(t)&= \lim _{k_{y}\rightarrow 0}\frac{P_{xy}(k_{y},t) }{V}, \end{aligned}$$
(A22)
$$\begin{aligned} P_{xy}(0)&= \lim _{k_{y}\rightarrow 0}\frac{P_{xy}(k_{y},0) }{V}, \end{aligned}$$
(A23)

where V is system volume. For the norm of the transverse current, one can get

$$\begin{aligned}&\langle J_{x}(k_{y}=0) J_{x}^{*}(k_{y}=0)\rangle \\&=\left\langle \sum _{i}^{N}p_{xi} \sum _{j}^{N}p_{xj}\right\rangle \nonumber \\&=\left\langle \sum _{i}^{N}p_{xi}^{2}\rangle +N(N-1)\langle p_{1x}p_{2x}\right\rangle . \nonumber \end{aligned}$$
(A24)

At equilibrium, \( p_{1x}\) is independent of \(p_{2x}\), so the second term of right-hand side of Eq. (A24) is zero. Then we can obtain a new form of the Green–Kubo formula for shear viscosity

$$\begin{aligned} \eta _{new} = \frac{VNm}{\left\langle \sum _{i}^{N}p_{xi}^{2}\right\rangle } \int _{0}^{\infty }\langle P_{xy}(t)P_{xy}(0) \rangle dt, \end{aligned}$$
(A25)

where \(\langle \ldots \rangle \) denotes ensemble average. For an equilibrium system which obeys the Boltzmann distribution, one can get

$$\begin{aligned} \left\langle \sum _{i}^{N}p_{xi}^{2} \right\rangle = \left\langle \frac{1}{3}\sum _{i}^{N}p_{i}^{2} \right\rangle = Nmk_{B}T, \end{aligned}$$
(A26)

where T is temperature and \(k_{B}\) (\(k_{B}\) = 1) is the Boltzmann constant. Then the normal Green–Kubo formula for shear viscosity can be given

$$\begin{aligned} \eta _{nor} = \frac{V}{T} \int _{0}^{\infty }\langle P_{xy}(t)P_{xy}(0) \rangle dt. \end{aligned}$$
(A27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X.G., Ma, Y.G. & Zhang, Y.X. Green–Kubo formula for Boltzmann and Fermi–Dirac statistics. Eur. Phys. J. A 57, 242 (2021). https://doi.org/10.1140/epja/s10050-021-00550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00550-4

Navigation