Skip to main content
Log in

Recent developments in chiral and spin polarization effects in heavy-ion collisions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions. We present updated experimental results for the chiral magnetic effect and related phenomena. The time evolution of the magnetic fields in different models is discussed. The newly developed quantum kinetic theory for massive fermions is reviewed. We present theoretical and experimental results for the polarization of \(\Lambda\) hyperons and the \(\rho _{00}\) value of vector mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Bloczynski, X.-G. Huang, X. Zhang et al., Azimuthally fluctuating magnetic field and its impacts on observables in heavy-ion collisions. Phys. Lett. B 718, 1529 (2013). https://doi.org/10.1016/j.physletb.2012.12.030

    Article  Google Scholar 

  2. W.-T. Deng, X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 85, 044907 (2012). https://doi.org/10.1103/PhysRevC.85.044907

    Article  Google Scholar 

  3. V. Roy, S. Pu, Event-by-event distribution of magnetic field energy over initial fluid energy density in \(\sqrt{s_{{\rm NN}}}\)= 200 GeV Au–Au collisions. Phys. Rev. C 92, 064902 (2015). https://doi.org/10.1103/PhysRevC.92.064902

    Article  Google Scholar 

  4. H. Li, X.-L. Sheng, Q. Wang, Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions. Phys. Rev. C 94, 044903 (2016). https://doi.org/10.1103/PhysRevC.94.044903

    Article  Google Scholar 

  5. L. Adamczyk et al., Global \(\Lambda\) hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature 548, 62 (2017). https://doi.org/10.1038/nature23004

    Article  Google Scholar 

  6. D. Kharzeev, Parity violation in hot QCD: why it can happen, and how to look for it. Phys. Lett. B 633, 260 (2006). https://doi.org/10.1016/j.physletb.2005.11.075

    Article  Google Scholar 

  7. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: "event by event P and CP violation". Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298

    Article  Google Scholar 

  8. K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). https://doi.org/10.1103/PhysRevD.78.074033

    Article  Google Scholar 

  9. Q. Li,  D.E. Kharzeev, C. Zhang et al., Observation of the chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550 (2016). https://doi.org/10.1038/nphys3648

    Article  Google Scholar 

  10. D.E. Kharzeev, Q. Li, The Chiral Qubit: quantum computing with chiral anomaly, (2019), in preparation, arXiv: 1903.07133

  11. D.E. Kharzeev, J. Liao, S.A. Voloshin et al., Chiral magnetic and vortical effects in high energy nuclear collisions: a status report. Prog. Part. Nucl. Phys. 88, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.01.001

    Article  Google Scholar 

  12. J. Liao, Anomalous transport effects and possible environmental symmetry? Violation? in heavy-ion collisions. Pramana 84, 901 (2015). https://doi.org/10.1007/s12043-015-0984-x

    Article  Google Scholar 

  13. V.A. Miransky, I.A. Shovkovy, Quantum field theory in a magnetic field: from quantum chromodynamics to graphene and Dirac semimetals. Phys. Rep. 576, 1 (2015). https://doi.org/10.1016/j.physrep.2015.02.003

    Article  MATH  Google Scholar 

  14. X.-G. Huang, Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review. Rep. Prog. Phys. 79, 076302 (2016). https://doi.org/10.1088/0034-4885/79/7/076302

    Article  Google Scholar 

  15. V. Koch, S. Schlichting, V. Skokov et al., Status of the chiral magnetic effect and collisions of isobars. Chin. Phys. C 41, 072001 (2017). https://doi.org/10.1088/1674-1137/41/7/072001

    Article  Google Scholar 

  16. K. Fukushima, Extreme matter in electromagnetic fields and rotation. Prog. Part. Nucl. Phys. 107, 167 (2019). https://doi.org/10.1016/j.ppnp.2019.04.001

    Article  Google Scholar 

  17. A. Bzdak et al., Mapping the phases of quantum chromodynamics with beam energy scan, in preparation, arXiv:1906.00936

  18. J. Zhao, F. Wang, Experimental searches for the chiral magnetic effect in heavy-ion collisions. Prog. Part. Nucl. Phys. 107, 200 (2019). https://doi.org/10.1016/j.ppnp.2019.05.001

    Article  Google Scholar 

  19. F.Q. Wang, J. Zhao, Search for the chiral magnetic effect in heavy ion collisions. Nucl. Sci. Tech. 29, 179 (2018). https://doi.org/10.1007/s41365-018-0520-z

    Article  Google Scholar 

  20. Y.C. Liu, X.G. Huang, Anomalous chiral transports and spin polarization in heavy-ion collisions. Nucl. Sci. Tech. 31, 56 (2020). https://doi.org/10.1007/s41365-020-00764-z

    Article  Google Scholar 

  21. J. Adam et al., Polarization of \(\Lambda\) (\({\bar{\Lambda }}\)) hyperons along the beam direction in Au+Au collisions at \(\sqrt{s_{\rm{NN}}}\) = 200 GeV. Phys. Rev. Lett. 123, 132301 (2019). https://doi.org/10.1103/PhysRevLett.123.132301

    Article  Google Scholar 

  22. L. McLerran, V. Skokov, Comments about the electromagnetic field in heavy-ion collisions. Nucl. Phys. A 929, 184 (2014). https://doi.org/10.1016/j.nuclphysa.2014.05.008

    Article  Google Scholar 

  23. U. Gürsoy, D. Kharzeev, K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys. Rev. C 89, 054905 (2014). https://doi.org/10.1103/PhysRevC.89.054905

    Article  Google Scholar 

  24. U. Gürsoy, D. Kharzeev, E. Marcus et al., Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions. Phys. Rev. C 98, 055201 (2018). https://doi.org/10.1103/PhysRevC.98.055201

    Article  Google Scholar 

  25. S. Pu, V. Roy, L. Rezzolla et al., Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization. Phys. Rev. D 93, 074022 (2016). https://doi.org/10.1103/PhysRevD.93.074022

    Article  Google Scholar 

  26. V. Roy, S. Pu, L. Rezzolla et al., Analytic Bjorken flow in one-dimensional relativistic magnetohydrodynamics. Phys. Lett. B 750, 45 (2015). https://doi.org/10.1016/j.physletb.2015.08.046

    Article  MATH  Google Scholar 

  27. S. Pu, D.-L. Yang, Transverse flow induced by inhomogeneous magnetic fields in the Bjorken expansion. Phys. Rev. D 93, 054042 (2016). https://doi.org/10.1103/PhysRevD.93.054042

    Article  Google Scholar 

  28. S. Pu, D.-L. Yang, Analytic solutions of transverse magneto-hydrodynamics under bjorken expansion. EPJ Web Conf. 137, 13021 (2017). https://doi.org/10.1051/epjconf/201713713021

    Article  Google Scholar 

  29. V. Roy, S. Pu, L. Rezzolla et al., Effect of intense magnetic fields on reduced-MHD evolution in \(\sqrt{s_{{\rm NN}}}\) = 200 GeV Au+Au collisions. DAE Symp. Nucl. Phys. 62, 926 (2017)

    Google Scholar 

  30. I. Siddique, R.-J. Wang, S. Pu et al., Anomalous magnetohydrodynamics with longitudinal boost invariance and chiral magnetic effect. Phys. Rev. D 99, 114029 (2019). https://doi.org/10.1103/PhysRevD.99.114029

    Article  MathSciNet  Google Scholar 

  31. R.-J. Wang, P. Copinger, S. Pu, Anomalous magnetohydrodynamics with constant anisotropic electric conductivities, in 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, in preparation. arXiv:2004.06408

  32. G. Inghirami, L.D. Zanna, A. Beraudo et al., Numerical magneto-hydrodynamics for relativistic nuclear collisions. Eur. Phys. J. C 76, 659 (2016). https://doi.org/10.1140/epjc/s10052-016-4516-8

    Article  Google Scholar 

  33. G. Inghirami et al., Magnetic fields in heavy ion collisions: flow and charge transport, in preparation. arXiv:1908.07605

  34. L.-G. Pang, G. Endrődi, H. Petersen, Magnetic-field-induced squeezing effect at energies available at the BNL relativistic heavy ion collider and at the CERN large hadron collider. Phys. Rev. C 93, 044919 (2016). https://doi.org/10.1103/PhysRevC.93.044919

    Article  Google Scholar 

  35. G.S. Denicol, X.G. Huang, E. Molnar et al., Nonresistive dissipative magnetohydrodynamics from the Boltzmann equation in the 14-moment approximation. Phys. Rev. D 98, 076009 (2018). https://doi.org/10.1103/PhysRevD.98.076009

    Article  MathSciNet  Google Scholar 

  36. G.S. Denicol, E. Molnar, H. Niemi et al., Resistive dissipative magnetohydrodynamics from the Boltzmann–Vlasov equation. Phys. Rev. D 99, 056017 (2019). https://doi.org/10.1103/PhysRevD.99.056017

    Article  Google Scholar 

  37. S. Shi, C. Gale, S. Jeon, From chiral kinetic theory to spin hydrodynamics, in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions (Quark Matter 2019) Wuhan, China, November 4–9, 2019, in preparation. arXiv:2002.01911

  38. B. Müller, A. Schäfer, Chiral magnetic effect and an experimental bound on the late time magnetic field strength. Phys. Rev. D 98, 071902 (2018). https://doi.org/10.1103/PhysRevD.98.071902

    Article  Google Scholar 

  39. Y. Guo, S. Shi, S. Feng et al., Magnetic field induced polarization difference between hyperons and anti-hyperons. Phys. Lett. B 798, 134929 (2019). https://doi.org/10.1016/j.physletb.2019.134929

    Article  Google Scholar 

  40. L. Huang, C.-W. Ma, G.-L. Ma, Investigating the quark flavor dependence of the chiral magnetic effect with a multiphase transport model. Phys. Rev. C 97, 034909 (2018). https://doi.org/10.1103/PhysRevC.97.034909

    Article  Google Scholar 

  41. W.-T. Deng, X.-G. Huang, G.-L. Ma et al., Predictions for isobaric collisions at \(\sqrt{s_{{{\rm NN}}}}\) = 200 GeV from a multiphase transport model. Phys. Rev. C 97, 044901 (2018). https://doi.org/10.1103/PhysRevC.97.044901

    Article  Google Scholar 

  42. X.-L. Zhao, G.-L. Ma, Y.-G. Ma, Impact of magnetic-field fluctuations on measurements of the chiral magnetic effect in collisions of isobaric nuclei. Phys. Rev. C 99, 034903 (2019). https://doi.org/10.1103/PhysRevC.99.034903

    Article  Google Scholar 

  43. L. Huang, M.-W. Nie, G.-L. Ma, Sensitivity analysis of the chiral magnetic effect observables using a multiphase transport model. Phys. Rev. C 101, 024916 (2020). https://doi.org/10.1103/PhysRevC.101.024916

    Article  Google Scholar 

  44. N. Magdy, M.-W. Nie, G.-L. Ma, et al., A sensitivity study of the primary correlators used to characterize chiral-magnetically-driven charge separation, (2020), in preparation. arXiv:2002.07934

  45. Y. Jiang, S. Shi, Y. Yin et al., Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics. Chin. Phys. C 42, 011001 (2018). https://doi.org/10.1088/1674-1137/42/1/011001

    Article  Google Scholar 

  46. S. Shi, Y. Jiang, E. Lilleskov et al., Anomalous chiral transport in heavy ion collisions from anomalous-viscous fluid dynamics. Ann. Phys. 394, 50 (2018). https://doi.org/10.1016/j.aop.2018.04.026

    Article  MathSciNet  Google Scholar 

  47. S. Shi, Y. Jiang, E. Lilleskov et al., Quantification of chiral magnetic effect from event-by-event anomalous-viscous fluid mechanics. PoS CPOD2017, 021 (2018). https://doi.org/10.22323/1.311.0021

    Article  Google Scholar 

  48. B. Schenke, C. Shen, P. Tribedy, Multi-particle and charge-dependent azimuthal correlations in heavy-ion collisions at the relativistic heavy-ion collider. Phys. Rev. C 99, 044908 (2019). https://doi.org/10.1103/PhysRevC.99.044908

    Article  Google Scholar 

  49. D. Oliinychenko, V. Koch, Microcanonical particlization with local conservation laws. Phys. Rev. Lett. 123, 182302 (2019). https://doi.org/10.1103/PhysRevLett.123.182302

    Article  Google Scholar 

  50. S. Shi, H. Zhang, D. Hou, et al., Signatures of chiral magnetic effect in the collisions of isobars (2019), in preparation. arXiv:1910.14010

  51. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Real-time dynamics of the Chiral magnetic effect. Phys. Rev. Lett. 104, 212001 (2010). https://doi.org/10.1103/PhysRevLett.104.212001

    Article  Google Scholar 

  52. J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951). https://doi.org/10.1103/PhysRev.82.664

    Article  MathSciNet  MATH  Google Scholar 

  53. P. Copinger, K. Fukushima, S. Pu, Axial ward identity and the schwinger mechanism—applications to the real-time chiral magnetic effect and condensates. Phys. Rev. Lett. 121, 261602 (2018). https://doi.org/10.1103/PhysRevLett.121.261602

    Article  Google Scholar 

  54. B. Feng, D.-F. Hou, H.C. Ren et al., Chiral magnetic effect in a lattice model. Phys. Rev. D 95, 114023 (2017). https://doi.org/10.1103/PhysRevD.95.114023

    Article  MathSciNet  Google Scholar 

  55. Y. Wu, D. Hou, H.-C. Ren, Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect. Phys. Rev. D 96, 096015 (2017). https://doi.org/10.1103/PhysRevD.96.096015

    Article  MathSciNet  Google Scholar 

  56. S. Lin, L. Yang, Mass correction to chiral vortical effect and chiral separation effect. Phys. Rev. D 98, 114022 (2018). https://doi.org/10.1103/PhysRevD.98.114022

    Article  MathSciNet  Google Scholar 

  57. M. Horvath, D. Hou, J. Liao, H.-C. Ren, Chiral magnetic response to arbitrary axial imbalance. Phys. Rev. D 101, 076026 (2020). https://doi.org/10.1103/PhysRevD.101.076026

    Article  MathSciNet  Google Scholar 

  58. B. Feng, D.-F. Hou, H.-C. Ren, QED radiative corrections to chiral magnetic effect. Phys. Rev. D 99, 036010 (2019). https://doi.org/10.1103/PhysRevD.99.036010

    Article  Google Scholar 

  59. D.-F. Hou, S. Lin, Fluctuation and dissipation of axial charge from massive quarks. Phys. Rev. D 98, 054014 (2018). https://doi.org/10.1103/PhysRevD.98.054014

    Article  Google Scholar 

  60. S. Lin, L. Yan, G.-R. Liang, Axial charge fluctuation and chiral magnetic effect from stochastic hydrodynamics. Phys. Rev. C 98, 014903 (2018). https://doi.org/10.1103/PhysRevC.98.014903

    Article  Google Scholar 

  61. S.A. Voloshin, Parity violation in hot QCD: how to detect it. Phys. Rev. C 70, 057901 (2004). https://doi.org/10.1103/PhysRevC.70.057901

    Article  Google Scholar 

  62. B.A. Alice et al., Charge separation relative to the reaction plane in Pb-Pb collisions at \(\sqrt{s_{\rm{NN}}}= 2.76\) TeV. Phys. Rev. Lett. 110, 012301 (2013). https://doi.org/10.1103/PhysRevLett.110.012301

    Article  Google Scholar 

  63. Alice, S. A, Search for the chiral magnetic effect with the ALICE detector, in 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2019) Wuhan, China, November 4–9, 2019, in preparation. arXiv:2005.06177

  64. W.-T. Deng, X.-G. Huang, G.-L. Ma et al., Test the chiral magnetic effect with isobaric collisions. Phys. Rev. C 94, 041901 (2016). https://doi.org/10.1103/PhysRevC.94.041901

    Article  Google Scholar 

  65. A. Bzdak, V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions. Phys. Lett. B 710, 171 (2012). https://doi.org/10.1016/j.physletb.2012.02.065

    Article  Google Scholar 

  66. J. Zhao, Search for CME in U+U and Au+Au collisions in STAR with different approaches of handling backgrounds, in preparation. arXiv:2002.09410

  67. H.-J. Xu, J. Zhao, X.-B. Wang et al., Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision. Chin. Phys. C 42, 084103 (2018). https://doi.org/10.1088/1674-1137/42/8/084103

    Article  Google Scholar 

  68. CMS, V. Khachatryan et al., Observation of charge-dependent azimuthal correlations in \(p\)-Pb collisions and its implication for the search for the chiral magnetic effect. Phys. Rev. Lett. 118, 122301 (2017). https://doi.org/10.1103/PhysRevLett.118.122301

  69. CMS, A. M. Sirunyan et al., Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in \(p{{\rm Pb}}\) and PbPb collisions at the CERN Large Hadron Collider. Phys. Rev. C97, 044912 (2018). https://doi.org/10.1103/PhysRevC.97.044912

  70. Y. Lin, Measurement of the charge separation along the magnetic field with Signed Balance Function in 200 GeV Au + Au collisions at STAR, in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions (Quark Matter 2019) Wuhan, China, November 4–9, 2019, in preparation. arXiv: 2002.11446

  71. A. Bzdak, V. Koch, J. Liao, Charge-dependent correlations in relativistic heavy ion collisions and the chiral magnetic effect. Lect. Notes Phys. 871, 503 (2013). https://doi.org/10.1007/978-3-642-37305-3-19

    Article  Google Scholar 

  72. J. Adam et al., Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}= 200\) GeV, in preparation. arXiv:2006.05035

  73. W. Li, G. Wang, Chiral Magnetic Effects in Nuclear Collisions, in preparation. arXiv:2002.10397

  74. A.H. Tang, Probe Chiral Magnetic Effect with Signed Balance Function, in preparation. arXiv:1903.04622

  75. J. Adam et al. [STAR], Charge separation measurements in \(p\)(\(d\))+Au and Au+Au collisions; implications for the chiral magnetic effect, in preparation. arXiv:2006.04251

  76. N. Magdy, S. Shi, J. Liao et al., New correlator to detect and characterize the chiral magnetic effect. Phys. Rev. C 97, 061901 (2018). https://doi.org/10.1103/PhysRevC.97.061901

    Article  Google Scholar 

  77. N. Magdy, S. Shi, J. Liao et al., Examination of the observability of a chiral magnetically driven charge-separation difference in collisions of the \({{\rm Ru}}^{96}_{44}{{\rm Ru}} +\, {{\rm Ru}}^{96}_{44}\) and \({{\rm Zr}}^{96}_{40}{{\rm Zr}} +\, {{\rm Zr}}^{96}_{40}\) isobars at energies available at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 98, 061902 (2018). https://doi.org/10.1103/PhysRevC.98.061902

  78. X.-L. Zhao, Y.-G. Ma, G.-L. Ma, Electromagnetic fields in small systems from a multiphase transport model. Phys. Rev. C 97, 024910 (2018). https://doi.org/10.1103/PhysRevC.97.024910

    Article  Google Scholar 

  79. L. Adamczyk et al., Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions. Phys. Rev. Lett. 114, 252302 (2015). https://doi.org/10.1103/PhysRevLett.114.252302

    Article  Google Scholar 

  80. H.-J. Xu, X.-B. Wang, H.-L. Li et al., Importance of isobar density distributions on the chiral magnetic effect search. Phys. Rev. Lett. 121, 022301 (2018). https://doi.org/10.1103/PhysRevLett.121.022301

    Article  Google Scholar 

  81. H.-J. Xu, J. Zhao, Y. Feng, et al. Importance of non-flow background on the chiral magnetic wave search, in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions (Quark Matter 2019) Wuhan, China, November 4–9, 2019, in preparation. arXiv:2002.05220

  82. D.E. Kharzeev, H.-U. Yee, Chiral magnetic wave. Phys. Rev. D 83, 085007 (2011). https://doi.org/10.1103/PhysRevD.83.085007

    Article  Google Scholar 

  83. Y. Burnier, D.E. Kharzeev, J. Liao et al., Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions. Phys. Rev. Lett. 107, 052303 (2011). https://doi.org/10.1103/PhysRevLett.107.052303

    Article  Google Scholar 

  84. G.-L. Ma, Final state effects on charge asymmetry of pion elliptic flow in high-energy heavy-ion collisions. Phys. Lett. B 735, 383 (2014). https://doi.org/10.1016/j.physletb.2014.06.074

    Article  Google Scholar 

  85. H.-J. Xu, J. Zhao, Y. Feng et al., Complications in the interpretation of the charge asymmetry dependent \(\pi\) flow for the chiral magnetic wave. Phys. Rev. C 101, 014913 (2020). https://doi.org/10.1103/PhysRevC.101.014913

    Article  Google Scholar 

  86. Q.-Y. Shou, Search for the chiral magnetic wave with anisotropic flow of identified particles at RHIC-STAR. Nucl. Phys. A 982, 555 (2019). https://doi.org/10.1016/j.nuclphysa.2018.09.016

    Article  Google Scholar 

  87. M.A. Stephanov, Y. Yin, Chiral kinetic theory. Phys. Rev. Lett. 109, 162001 (2012). https://doi.org/10.1103/PhysRevLett.109.162001

    Article  Google Scholar 

  88. D.T. Son, N. Yamamoto, Kinetic theory with Berry curvature from quantum field theories. Phys. Rev. D 87, 085016 (2013). https://doi.org/10.1103/PhysRevD.87.085016

    Article  Google Scholar 

  89. J.-W. Chen, S. Pu, Q. Wang et al., Berry curvature and four-dimensional monopoles in the relativistic chiral kinetic equation. Phys. Rev. Lett. 110, 262301 (2013). https://doi.org/10.1103/PhysRevLett.110.262301

    Article  Google Scholar 

  90. C. Manuel, J.M. Torres-Rincon, Kinetic theory of chiral relativistic plasmas and energy density of their gauge collective excitations. Phys. Rev. D 89, 096002 (2014). https://doi.org/10.1103/PhysRevD.89.096002

    Article  Google Scholar 

  91. C. Manuel, J.M. Torres-Rincon, Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory. Phys. Rev. D 90, 076007 (2014). https://doi.org/10.1103/PhysRevD.90.076007

    Article  Google Scholar 

  92. J.-Y. Chen, D.T. Son, M.A. Stephanov et al., Lorentz invariance in chiral kinetic theory. Phys. Rev. Lett. 113, 182302 (2014). https://doi.org/10.1103/PhysRevLett.113.182302

    Article  Google Scholar 

  93. J.-Y. Chen, D.T. Son, M.A. Stephanov, Collisions in chiral kinetic theory. Phys. Rev. Lett. 115, 021601 (2015). https://doi.org/10.1103/PhysRevLett.115.021601

    Article  Google Scholar 

  94. Y. Hidaka, S. Pu, D.-L. Yang, Relativistic chiral kinetic theory from quantum field theories. Phys. Rev. D 95, 091901 (2017). https://doi.org/10.1103/PhysRevD.95.091901

    Article  Google Scholar 

  95. N. Mueller, R. Venugopalan, The chiral anomaly, Berry’s phase and chiral kinetic theory, from world-lines in quantum field theory. Phys. Rev. D 97, 051901 (2018). https://doi.org/10.1103/PhysRevD.97.051901

    Article  Google Scholar 

  96. Y. Hidaka, S. Pu, D.-L. Yang, Nonlinear responses of chiral fluids from kinetic theory. Phys. Rev. D 97, 016004 (2018). https://doi.org/10.1103/PhysRevD.97.016004

    Article  MathSciNet  Google Scholar 

  97. Y. Hidaka, S. Pu, D.-L. Yang, Non-equilibrium quantum transport of chiral fluids from kinetic theory. Nucl. Phys. A 982, 547 (2019). https://doi.org/10.1016/j.nuclphysa.2018.10.033

    Article  Google Scholar 

  98. A. Huang, S. Shi, Y. Jiang et al., Complete and consistent chiral transport from Wigner function formalism. Phys. Rev. D 98, 036010 (2018). https://doi.org/10.1103/PhysRevD.98.036010

    Article  MathSciNet  Google Scholar 

  99. J.-H. Gao, Z.-T. Liang, Q. Wang et al., Disentangling covariant Wigner functions for chiral fermions. Phys. Rev. D 98, 036019 (2018). https://doi.org/10.1103/PhysRevD.98.036019

    Article  Google Scholar 

  100. Y.-C. Liu, L.-L. Gao, K. Mameda et al., Chiral kinetic theory in curved spacetime. Phys. Rev. D 99, 085014 (2019). https://doi.org/10.1103/PhysRevD.99.085014

    Article  MathSciNet  Google Scholar 

  101. S. Lin, A. Shukla, Chiral kinetic theory from effective field theory revisited. JHEP 06, 060 (2019). https://doi.org/10.1007/JHEP06(2019)060

    Article  MathSciNet  MATH  Google Scholar 

  102. S. Lin, L. Yang, Chiral kinetic theory from Landau level basis. Phys. Rev. D 101, 034006 (2020). https://doi.org/10.1103/PhysRevD.101.034006

    Article  MathSciNet  Google Scholar 

  103. Y. Sun, C.M. Ko, F. Li, Anomalous transport model study of chiral magnetic effects in heavy ion collisions. Phys. Rev. C 94, 045204 (2016). https://doi.org/10.1103/PhysRevC.94.045204

    Article  Google Scholar 

  104. Y. Sun, C.M. Ko, Chiral vortical and magnetic effects in the anomalous transport model. Phys. Rev. C 95, 034909 (2017). https://doi.org/10.1103/PhysRevC.95.034909

    Article  Google Scholar 

  105. Y. Sun, C.M. Ko, \(\Lambda\) hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach. Phys. Rev. C 96, 024906 (2017). https://doi.org/10.1103/PhysRevC.96.024906

    Article  Google Scholar 

  106. Y. Sun, C.M. Ko, Chiral kinetic approach to the chiral magnetic effect in isobaric collisions. Phys. Rev. C 98, 014911 (2018). https://doi.org/10.1103/PhysRevC.98.014911

    Article  Google Scholar 

  107. Y. Sun, C.M. Ko, Azimuthal angle dependence of the longitudinal spin polarization in relativistic heavy ion collisions. Phys. Rev. C 99, 011903 (2019). https://doi.org/10.1103/PhysRevC.99.011903

    Article  Google Scholar 

  108. W.-H. Zhou, J. Xu, Simulating the chiral magnetic wave in a box system. Phys. Rev. C 98, 044904 (2018). https://doi.org/10.1103/PhysRevC.98.044904

    Article  Google Scholar 

  109. W.-H. Zhou, J. Xu, Simulating chiral anomalies with spin dynamics. Phys. Lett. B 798, 134932 (2019). https://doi.org/10.1016/j.physletb.2019.134932

    Article  MathSciNet  Google Scholar 

  110. S.Y.F. Liu, Y. Sun, C.M. Ko, Spin polarizations in a covariant angular momentum conserved chiral transport model, in preparation. arXiv:1910.06774

  111. J. Adam et al., Global polarization of \(\Lambda\) hyperons in Au+Au collisions at \(\sqrt{s_{\rm{NN}}} = 200\) GeV. Phys. Rev. C 98, 014910 (2018). https://doi.org/10.1103/PhysRevC.98.014910

    Article  Google Scholar 

  112. J.-H. Gao, Z.-T. Liang, Relativistic quantum kinetic theory for massive fermions and spin effects. Phys. Rev. D 100, 056021 (2019). https://doi.org/10.1103/PhysRevD.100.056021

    Article  MathSciNet  Google Scholar 

  113. N. Weickgenannt, X.-L. Sheng, E. Speranza et al., Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism. Phys. Rev. D 100, 056018 (2019). https://doi.org/10.1103/PhysRevD.100.056018

    Article  MathSciNet  Google Scholar 

  114. N. Weickgenannt, X.-L. Sheng, E. Speranza, et al., Wigner function and kinetic theory for massive spin-1/2 particles, in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions (Quark Matter 2019) Wuhan, China, November 4–9, 2019, in preparation. arXiv:2001.11862

  115. U.W. Heinz, Kinetic theory for nonabelian plasmas. Phys. Rev. Lett. 51, 351 (1983). https://doi.org/10.1103/PhysRevLett.51.351

    Article  Google Scholar 

  116. H.T. Elze, M. Gyulassy, D. Vasak, Transport equations for the QCD quark wigner operator. Nucl. Phys. B 276, 706 (1986). https://doi.org/10.1016/0550-3213(86)90072-6

    Article  Google Scholar 

  117. D. Vasak, M. Gyulassy, H.T. Elze, Quantum transport theory for Abelian plasmas. Ann. Phys. 173, 462 (1987). https://doi.org/10.1016/0003-4916(87)90169-2

    Article  Google Scholar 

  118. J.-H. Gao, Z.-T. Liang, Q. Wang, Dirac sea and chiral anomaly in the quantum kinetic theory. Phys. Rev. D 1910, 11060 (2019)

    Google Scholar 

  119. X.-L. Sheng, Q. Wang, X.-G. Huang, Kinetic theory with spin: From massive to massless fermions, in preparation. arXiv:2005.00204

  120. K. Hattori, Y. Hidaka, D.-L. Yang, Axial kinetic theory and spin transport for fermions with arbitrary mass. Phys. Rev. D 100, 096011 (2019). https://doi.org/10.1103/PhysRevD.100.096011

    Article  MathSciNet  Google Scholar 

  121. D.-L. Yang, K. Hattori, Y. Hidaka, Quantum kinetic theory for spin transport: general formalism for collisional effects, in preparation. arXiv: 2002.02612

  122. Y.-C. Liu, K. Mameda, X.-G. Huang, Covariant spin kinetic theory I: collisionless limit, in preparation. arXiv:2002.03753

  123. I. Bialynicki-Birula, P. Gornicki, J. Rafelski, Phase space structure of the Dirac vacuum. Phys. Rev. D 44, 1825 (1991). https://doi.org/10.1103/PhysRevD.44.1825

    Article  Google Scholar 

  124. P.-F. Zhuang, U.W. Heinz, Equal-time hierarchies in quantum transport theory. Phys. Rev. D 57, 6525 (1998). https://doi.org/10.1103/PhysRevD.57.6525

    Article  Google Scholar 

  125. E. Gorbar, V. Miransky, I. Shovkovy et al., Wigner function and kinetic phenomena for chiral plasma in a strong magnetic field. JHEP 08, 103 (2017). https://doi.org/10.1007/JHEP08(2017)103

    Article  MathSciNet  MATH  Google Scholar 

  126. F. Hebenstreit, R. Alkofer, H. Gies, Schwinger pair production in space and time-dependent electric fields: relating the Wigner formalism to quantum kinetic theory. Phys. Rev. D 82, 105026 (2010). https://doi.org/10.1103/PhysRevD.82.105026

    Article  Google Scholar 

  127. X.-L. Sheng, R.-H. Fang, Q. Wang et al., Wigner function and pair production in parallel electric and magnetic fields. Phys. Rev. D 99, 056004 (2019). https://doi.org/10.1103/PhysRevD.99.056004

    Article  MathSciNet  Google Scholar 

  128. Z. Wang, X. Guo, S. Shi et al., Mass correction to chiral kinetic equations. Phys. Rev. D 100, 014015 (2019). https://doi.org/10.1103/PhysRevD.100.014015

    Article  MathSciNet  Google Scholar 

  129. S. Li, H.-U. Yee, Quantum kinetic theory of spin polarization of massive quarks in perturbative QCD: leading log. Phys. Rev. D 100, 056022 (2019). https://doi.org/10.1103/PhysRevD.100.056022

    Article  MathSciNet  Google Scholar 

  130. X. Guo, Massless Limit of Transport Theory for Massive Fermions, accepted by China Physics C. https://iopscience.iop.org/article/10.1088/1674-1137/ababf9.

  131. Z.-T. Liang, X.-N. Wang, Globally polarized quark-gluon plasma in non-central A+A collisions, Phys. Rev. Lett. 94, 102301 (2005), https://doi.org/10.1103/PhysRevLett.94.102301, [Erratum: Phys. Rev. Lett.96,039901(2006)], https://doi.org/10.1103/PhysRevLett.96.039901

  132. Z.-T. Liang, X.-N. Wang, Spin alignment of vector mesons in non-central A+A collisions. Phys. Lett. B 629, 20 (2005). https://doi.org/10.1016/j.physletb.2005.09.060

    Article  Google Scholar 

  133. B. Betz, M. Gyulassy, G. Torrieri, Polarization probes of vorticity in heavy ion collisions. Phys. Rev. C 76, 044901 (2007). https://doi.org/10.1103/PhysRevC.76.044901

    Article  Google Scholar 

  134. F. Becattini, F. Piccinini, The Ideal relativistic spinning gas: polarization and spectra. Ann. Phys. 323, 2452 (2008). https://doi.org/10.1016/j.aop.2008.01.001

    Article  MATH  Google Scholar 

  135. F. Becattini, F. Piccinini, J. Rizzo, Angular momentum conservation in heavy ion collisions at very high energy. Phys. Rev. C 77, 024906 (2008). https://doi.org/10.1103/PhysRevC.77.024906

    Article  Google Scholar 

  136. F. Becattini, V. Chandra, L. Del Zanna et al., Relativistic distribution function for particles with spin at local thermodynamical equilibrium. Ann. Phys. 338, 32 (2013). https://doi.org/10.1016/j.aop.2013.07.004

    Article  MathSciNet  MATH  Google Scholar 

  137. Q. Wang, Global and local spin polarization in heavy ion collisions: a brief overview. Nucl. Phys. A 967, 225 (2017). https://doi.org/10.1016/j.nuclphysa.2017.06.053

    Article  Google Scholar 

  138. F. Becattini, M.A. Lisa, Polarization and vorticity in the quark gluon plasma (2020). https://doi.org/10.1146/annurev-nucl-021920-095245

  139. F. Becattini, Polarization in relativistic fluids: a quantum field theoretical derivation, in preparation. arXiv:2004.04050

  140. Y. Jiang, Z.-W. Lin, J. Liao, Rotating quark-gluon plasma in relativistic heavy ion collisions. Phys. Rev. C 94, 044910 (2016). https://doi.org/10.1103/PhysRevC.94.044910, [Erratum: Phys. Rev.C 95, 049904(2017)], https://doi.org/10.1103/PhysRevC.95.049904

  141. W.-T. Deng, X.-G. Huang, Vorticity in heavy-ion collisions. Phys. Rev. C 93, 064907 (2016). https://doi.org/10.1103/PhysRevC.93.064907

    Article  Google Scholar 

  142. H. Li, L.-G. Pang, Q. Wang et al., Global \(\Lambda\) polarization in heavy-ion collisions from a transport model. Phys. Rev. C 96, 054908 (2017). https://doi.org/10.1103/PhysRevC.96.054908

    Article  Google Scholar 

  143. D.-X. Wei, W.-T. Deng, X.-G. Huang, Thermal vorticity and spin polarization in heavy-ion collisions. Phys. Rev. C 99, 014905 (2019). https://doi.org/10.1103/PhysRevC.99.014905

    Article  Google Scholar 

  144. L. Csernai, V. Magas, D. Wang, Flow vorticity in peripheral high energy heavy ion collisions. Phys. Rev. C 87, 034906 (2013). https://doi.org/10.1103/PhysRevC.87.034906

    Article  Google Scholar 

  145. F. Becattini, L. Csernai, D. Wang, \(\Lambda\) polarization in peripheral heavy ion collisions. Phys. Rev. C 88, 034905 (2013). [Erratum: Phys.Rev.C 93, 069901 (2016)], https://doi.org/10.1103/PhysRevC.88.034905

  146. F. Becattini et al., A study of vorticity formation in high energy nuclear collisions. Eur. Phys. J. C 75, 406 (2015), [Erratum: Eur.Phys.J.C 78, 354 (2018)], https://doi.org/10.1140/epjc/s10052-015-3624-1

  147. L.-G. Pang, H. Petersen, Q. Wang et al., Vortical fluid and \(\Lambda\) spin correlations in high-energy heavy-ion collisions. Phys. Rev. Lett. 117, 192301 (2016). https://doi.org/10.1103/PhysRevLett.117.192301

    Article  Google Scholar 

  148. H.-Z. Wu, L.-G. Pang, X.-G. Huang et al., Local spin polarization in high energy heavy ion collisions. Phys. Rev. Res. 1, 033058 (2019). https://doi.org/10.1103/PhysRevResearch.1.033058

    Article  Google Scholar 

  149. H.-Z. Wu, L.-G. Pang, X.-G. Huang, et al., Local spin polarization in 200 GeV Au+Au and 2.76 TeV Pb+Pb collisions. in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions, in preparation. arXiv:2002.03360

  150. Y.B. Ivanov, A.A. Soldatov, Vorticity in heavy-ion collisions at the JINR nuclotron-based Ion collider fAcility. Phys. Rev. C 95, 054915 (2017). https://doi.org/10.1103/PhysRevC.95.054915

    Article  Google Scholar 

  151. Y.B. Ivanov, A.A. Soldatov, Vortex rings in fragmentation regions in heavy-ion collisions at \(\sqrt{{s}_{\rm{NN}}}=39\) GeV. Phys. Rev. C 97, 044915 (2018). https://doi.org/10.1103/PhysRevC.97.044915

    Article  Google Scholar 

  152. Y.B. Ivanov, V.D. Toneev, A.A. Soldatov, Estimates of hyperon polarization in heavy-ion collisions at collision energies \(\sqrt{{s}_{\rm{NN}}}=4-40\,{{\rm GeV}}\). Phys. Rev. C 100, 014908 (2019). https://doi.org/10.1103/PhysRevC.100.014908

    Article  Google Scholar 

  153. R.-H. Fang, J.-Y. Pang, Q. Wang et al., Pseudoscalar condensation induced by chiral anomaly and vorticity for massive fermions. Phys. Rev. D 95, 014032 (2017). https://doi.org/10.1103/PhysRevD.95.014032

    Article  Google Scholar 

  154. D.N. Zubarev, A.V. Prozorkevich, S.A. Smolyanskii, Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics. Theor. Math. Phys. 40, 821 (1979). https://doi.org/10.1007/BF01032069

    Article  MathSciNet  MATH  Google Scholar 

  155. C. van Weert, Maximum entropy principle and relativistic hydrodynamics. Ann. Phys. 140, 133 (1982). https://doi.org/10.1016/0003-4916(82)90338-4

    Article  MathSciNet  MATH  Google Scholar 

  156. F. Becattini, L. Bucciantini, E. Grossi et al., Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid. Eur. Phys. J. C 75, 191 (2015). https://doi.org/10.1140/epjc/s10052-015-3384-y

    Article  Google Scholar 

  157. F. Becattini, W. Florkowski, E. Speranza, Spin tensor and its role in non-equilibrium thermodynamics. Phys. Lett. B 789, 419 (2019). https://doi.org/10.1016/j.physletb.2018.12.016

    Article  MathSciNet  MATH  Google Scholar 

  158. E. Leader, C. Lorcé, The angular momentum controversy: what’s it all about and does it matter? Phys. Rep. 541, 163 (2014). https://doi.org/10.1016/j.physrep.2014.02.010

    Article  MathSciNet  Google Scholar 

  159. K. Fukushima, S. Pu, Relativistic decomposition of the orbital and the spin angular momentum in chiral physics and Feynman’s angular momentum paradox (2020), in preparation. arXiv:2001.00359

  160. K. Fukushima, S. Pu, Z. Qiu, Eddy magnetization from the chiral Barnett effect. Phys. Rev. A 99, 032105 (2019). https://doi.org/10.1103/PhysRevA.99.032105

    Article  Google Scholar 

  161. W. Florkowski, B. Friman, A. Jaiswal et al., Relativistic fluid dynamics with spin. Phys. Rev. C 97, 041901 (2018). https://doi.org/10.1103/PhysRevC.97.041901

    Article  Google Scholar 

  162. W. Florkowski, E. Speranza, F. Becattini, Perfect-fluid hydrodynamics with constant acceleration along the stream lines and spin polarization. Acta Phys. Polon. B 49, 1409 (2018). https://doi.org/10.5506/APhysPolB.49.1409

    Article  MathSciNet  Google Scholar 

  163. W. Florkowski, R. Ryblewski, A. Kumar, Relativistic hydrodynamics for spin-polarized fluids. Prog. Part. Nucl. Phys. 108, 103709 (2019). https://doi.org/10.1016/j.ppnp.2019.07.001

    Article  Google Scholar 

  164. K. Hattori, M. Hongo, X.-G. Huang et al., Fate of spin polarization in a relativistic fluid: an entropy-current analysis. Phys. Lett. B 795, 100 (2019). https://doi.org/10.1016/j.physletb.2019.05.040

    Article  MathSciNet  MATH  Google Scholar 

  165. S. Bhadury, W. Florkowski, A. Jaiswal, et al., Relativistic dissipative spin dynamics in the relaxation time approximation (2020), in preparation. arXiv:2002.03937

  166. D. Montenegro, L. Tinti, G. Torrieri, Ideal relativistic fluid limit for a medium with polarization. Phys. Rev. D 96, 056012 (2017), [Erratum: Phys.Rev.D 96, 079901 (2017)]. https://doi.org/10.1103/PhysRevD.96.056012

  167. D. Montenegro, L. Tinti, G. Torrieri, Sound waves and vortices in a polarized relativistic fluid. Phys. Rev. D 96, 076016 (2017). https://doi.org/10.1103/PhysRevD.96.076016

    Article  MathSciNet  Google Scholar 

  168. D. Montenegro, G. Torrieri, Causality and dissipation in relativistic polarizable fluids. Phys. Rev. D 100, 056011 (2019). https://doi.org/10.1103/PhysRevD.100.056011

    Article  Google Scholar 

  169. D. Montenegro, G. Torrieri, Linear response theory of relativistic hydrodynamics with spin, in preparation. arXiv:2004.10195

  170. S.R. De Groot, Relativistic Kinetic Theory. Principles and Applications, 1st edn (Elsevier Science Ltd, Amsterdam, 1980)

  171. J.-J. Zhang, R.-H. Fang, Q. Wang et al., A microscopic description for polarization in particle scatterings. Phys. Rev. C 100, 064904 (2019). https://doi.org/10.1103/PhysRevC.100.064904

    Article  Google Scholar 

  172. H.-Z. Wu, J.-J. Zhang, L.-G. Pang et al., ZMCintegral: a package for multi-dimensional Monte Carlo integration on multi-GPUs. Comput. Phys. Commun. 248, 106962 (2020). https://doi.org/10.1016/j.cpc.2019.106962

    Article  Google Scholar 

  173. J.-J. Zhang, H.-Z. Wu, ZMCintegral-v5: support for integrations with the scanning of large parameter space on multi-GPUs. Comput. Phys. Commun. (2020). https://doi.org/10.1016/j.cpc.2020.107240

    Article  Google Scholar 

  174. J.-J. Zhang, H.-Z. Wu, S. Pu, et al., Towards a full solution of relativistic Boltzmann equation for quark-gluon matter on GPUs (2019), in preparation. arXiv:1912.04457

  175. N. Weickgenannt, E. Speranza, X.-l. Sheng, et al., Generating spin polarization from vorticity through nonlocal collisions (2020), in preparation. arXiv:2005.01506

  176. F. Becattini, I. Karpenko, M.A. Lisa et al., Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field, and feed-down. Phys. Rev. C 95, 054902 (2017). https://doi.org/10.1103/PhysRevC.95.054902

    Article  Google Scholar 

  177. L. Csernai, J. Kapusta, T. Welle, \(\Lambda\) and \({\bar{\Lambda }}\) spin interaction with meson fields generated by the baryon current in high energy nuclear collisions. Phys. Rev. C 99, 021901 (2019). https://doi.org/10.1103/PhysRevC.99.021901

    Article  Google Scholar 

  178. X. Guo, J. Liao, E. Wang, Magnetic field in the charged subatomic swirl. Sci. Rep. 10, 2196 (2020). https://doi.org/10.1038/s41598-020-59129-6

    Article  Google Scholar 

  179. I. Karpenko, F. Becattini, Study of \(\Lambda\) polarization in relativistic nuclear collisions at \(\sqrt{s_{\rm{NN}}}\) = 7.7-200 GeV. Eur. Phys. J. C 77, 213 (2017). https://doi.org/10.1140/epjc/s10052-017-4765-1

    Article  Google Scholar 

  180. Y. Xie, D. Wang, L.P. Csernai, Global \(\Lambda\) polarization in high energy collisions. Phys. Rev. C 95, 031901 (2017). https://doi.org/10.1103/PhysRevC.95.031901

    Article  Google Scholar 

  181. S. Shi, K. Li, J. Liao, Searching for the subatomic swirls in the CuCu and CuAu collisions. Phys. Lett. B 788, 409 (2019). https://doi.org/10.1016/j.physletb.2018.09.066

    Article  Google Scholar 

  182. F. Becattini, I. Karpenko, Collective longitudinal polarization in relativistic heavy-ion collisions at very high energy. Phys. Rev. Lett. 120, 012302 (2018). https://doi.org/10.1103/PhysRevLett.120.012302

    Article  Google Scholar 

  183. X.-L. Xia, H. Li, Z.-B. Tang et al., Probing vorticity structure in heavy-ion collisions by local \(\Lambda\) polarization. Phys. Rev. C 98, 024905 (2018). https://doi.org/10.1103/PhysRevC.98.024905

    Article  Google Scholar 

  184. Sergei A. Voloshin, Vorticity and particle polarization in heavy ion collisions (experimental perspective). EPJ Web Conf. 171, 07002 (2018). https://doi.org/10.1051/epjconf/201817107002

    Article  Google Scholar 

  185. X.-L. Xia, H. Li, X.-G. Huang et al., Feed-down effect on \(\Lambda\) spin polarization. Phys. Rev. C 100, 014913 (2019). https://doi.org/10.1103/PhysRevC.100.014913

    Article  Google Scholar 

  186. F. Becattini, G. Cao, E. Speranza, Polarization transfer in hyperon decays and its effect in relativistic nuclear collisions. Eur. Phys. J. C 79, 741 (2019). https://doi.org/10.1140/epjc/s10052-019-7213-6

    Article  Google Scholar 

  187. K. Schilling, P. Seyboth, G.E. Wolf, On the analysis of vector meson production by polarized photons. Nucl. Phys. B15, 397 (1970). https://doi.org/10.1016/0550-3213(70)90070-2,[Erratum: Nucl. Phys.B18,332(1970)], https://doi.org/10.1016/0550-3213(70)90295-6

  188. B.I. Abelev et al., Spin alignment measurements of the K*0(892) and phi (1020) vector mesons in heavy ion collisions at \(\sqrt{s_{\rm{NN}}}\) = 200 GeV. Phys. Rev. C 77, 061902 (2008). https://doi.org/10.1103/PhysRevC.77.061902

  189. ALICE, S. Acharya et al., Measurement of spin-orbital angular momentum interactions in relativistic heavy-ion collisions, in preparation. arXiv:1910.14408

  190. Y.-G. Yang, R.-H. Fang, Q. Wang et al., Quark coalescence model for polarized vector mesons and baryons. Phys. Rev. C 97, 034917 (2018). https://doi.org/10.1103/PhysRevC.97.034917

    Article  Google Scholar 

  191. X.-L. Sheng, L. Oliva, Q. Wang, What can we learn from global spin alignment of \(\phi\) meson in heavy-ion collisions?, in preparation. arXiv:1910.13684

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Pu.

Additional information

This work was supported in part by the National Natural Science Foundation of China (Nos. 11890713, 11890714, 11835002, 11961131011, 11421505, 11535012 and 11890713) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB34030202 and XDB34030102).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, JH., Ma, GL., Pu, S. et al. Recent developments in chiral and spin polarization effects in heavy-ion collisions. NUCL SCI TECH 31, 90 (2020). https://doi.org/10.1007/s41365-020-00801-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00801-x

Keywords

Navigation