Skip to main content
Log in

Influence of strong magnetic field on the structure properties of strange quark stars

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate the thermodynamic properties of strange quark matter under the strong magnetic field in the framework of the MIT bag model in two cases of bag constants. We consider two cases of the magnetic field, the uniform magnetic field and the density-dependent magnetic field to calculate the equation of state of strange quark matter. For the case of density-dependent magnetic field, we use a Gaussian equation with two free parameters \(\beta \) and \(\theta \) and use two different sets of the parameters for the magnetic field changes (a slow and a fast decrease of the magnetic field from the center to the surface). Our results show that the energy conditions based on the limitation of the energy-momentum tensor, are satisfied in the corresponding conditions. We also show that the equation of state of strange quark matter becomes stiffer by increasing the magnetic field. In this paper, we also calculate the structure parameters of a pure strange quark star using the equation of state. We investigate the compactification factor (2M/R) and the surface redshift of star in different conditions. The results show that the strange quark star is denser than the neutron star and it is more compact in the presence of the stronger magnetic field. As another result, the compactification factor increases when we use a slow increase of the magnetic field from the surface to the center. Eventually, we compare our results with the observational results for some strange star candidates, and we find that the structure of the strange star candidates is comparable to that of the star in our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data related to these given discussions have been given in Tables 1, 2, 3.]

References

  1. M. Prakash, J.M. Lattimer, A.W. Steiner, D. Page, Nucl. Phys. A 715, 835 (2003)

    Article  ADS  Google Scholar 

  2. K. Nakazato, K. Sumiyoshi, S. Yamada, Phys. Rev. D 77, 103006 (2008)

    Article  ADS  Google Scholar 

  3. K. Nakazato, K. Sumiyoshi, S. Yamada, Astro. Phys. J. 721, 1284 (2010)

    Article  ADS  Google Scholar 

  4. E.D. Commins, P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  5. M. Gell-Mann, Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  6. G. Zweig, CERN Reports, 8419/TH.401 and 8419/ TH.412 (1964)

  7. D.D. Ivanenko, D.F. Kurdgelaidze, Astrophysics 1, 251 (1965)

    Article  ADS  Google Scholar 

  8. D.D. Ivanenko, D.F. Kurdgelaidze, Lettere al Nuovo Cimento 2, 13 (1969)

    Article  ADS  Google Scholar 

  9. N. Itoh, Prog. Theor. Exp. Phys. 44, 291 (1970)

    Article  ADS  Google Scholar 

  10. E. Witten, Phys. Rev. D 30, 272 (1984)

    ADS  Google Scholar 

  11. J.W. Yu, R.X. Xu, Res. Astron. Astrophys. 10, 815 (2010)

    Article  ADS  Google Scholar 

  12. S. Mukhopadhyay, D. Atta, D.N. Basu, Rom. Rep. Phys. 69, 101 (2017)

    Google Scholar 

  13. D. Lai, L. Shapiro, Astrophys. J. 383, 745 (1991)

    Article  ADS  Google Scholar 

  14. P. Haensel, J.L. Zdunik, R. Schaeer, Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  15. M. Bocquet et al., Astron. Astrophys. 301, 757 (1995)

    ADS  Google Scholar 

  16. L.D. Landau, J. Exp. Theor. Phys. 3, 920 (1956)

    Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1977)

    MATH  Google Scholar 

  18. Z. Rezaei, G.H. Bordbar, Eur. Phys. J. A 52, 132 (2016)

    Article  ADS  Google Scholar 

  19. Z. Rezaei, G.H. Bordbar, Eur. Phys. J. A 53, 43 (2017)

    Article  ADS  Google Scholar 

  20. L.L. Lopes, D.P. Menezes, J. Cosmol. Astropart. Phys. 8, 002 (2015)

    Article  ADS  Google Scholar 

  21. G.H. Bordbar, H. Bahri, F. Kayanikhoo, Res. Astron. Astrophys. 12, 1280 (2012)

    Article  ADS  Google Scholar 

  22. G.H. Bordbar, A. Peivand, Res. Astron. Astrophys. 11, 851 (2011)

    Article  ADS  Google Scholar 

  23. G.H. Bordbar, F. Kayanikhoo, H. Bahri, Iran. J. Sci. Technol. A37, 165 (2013)

    Google Scholar 

  24. G.H. Bordbar, Z. Alizadeh, Astrophysics 57, 130 (2014)

    Article  ADS  Google Scholar 

  25. G.H. Bordbar, B. Ziaei, Res. Astron. Astrophys. 12, 540 (2012)

    Article  ADS  Google Scholar 

  26. G.H. Bordbar, A. Poostforush, A. Zamani, Astrophysics 54, 277 (2011)

    Article  ADS  Google Scholar 

  27. G.H. Bordbar, R. Hosseini, F. Kayanikhoo, A. Poostforush, Astrophysics 62, 276 (2018)

    Article  ADS  Google Scholar 

  28. G.H. Bordbar, M. Bigdeli, T. Yazdizadeh, Int. J. Mod. Phys. A 21, 5991 (2006)

    Article  ADS  Google Scholar 

  29. T. Yazdizadeh, G.H. Bordbar, Res. Astron. Astrophys. 11, 471 (2011)

    Article  ADS  Google Scholar 

  30. C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  31. Z. Xiaoping et al., Phys. Rev. C 70, 015803 (2004)

    Article  ADS  Google Scholar 

  32. P.K. Sahu, Astrophys. J. 363, 603 (1995)

    Google Scholar 

  33. R.K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  34. A. Chodos et al., Phys. Rev. D 9, 3471 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  35. S. Hardeman, Ph.D thesis, Universiteit van Amesterdam (2007)

  36. G.F. Burgio et al., Phys. Lett. B 19, 526 (2002)

    Google Scholar 

  37. G.F. Burgio et al., Phys. Rev. C 66, 025802 (2002)

    Article  ADS  Google Scholar 

  38. U. Heinz, Nucl. Phys. A 685, 414 (2001)

    Article  ADS  Google Scholar 

  39. U. Heinz, M. Jacob, (2000). arXiv:nucl-th/0002042

  40. G.H. Bordbar, M. Modarres, J. Phys. G23, 1631 (1997)

    Article  ADS  Google Scholar 

  41. G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998)

    Article  ADS  Google Scholar 

  42. G.H. Bordbar, M. Bigdeli, Phys. Rev. C 75, 045804 (2007)

    Article  ADS  Google Scholar 

  43. G.H. Bordbar, M. Bigdeli, Phys. Rev. C 77, 015805 (2008)

    Article  ADS  Google Scholar 

  44. A. Rabhi et al., J. Phys. G 36, 115204 (2009)

    Article  ADS  Google Scholar 

  45. D.P. Menezes et al., Phys. Rev. C 80, 065805 (2009)

    Article  ADS  Google Scholar 

  46. V. Dexheimer, R. Negreiros, S. Schramm, Eur. Phys. J. A 48, 189 (2012)

    Article  ADS  Google Scholar 

  47. D. Bandyopadhyay, S. Chakrabarty, S. Pal, Phys. Rev. Lett. 79, 2176 (1997)

    Article  ADS  Google Scholar 

  48. R.H. Casali, L.B. Castro, D.P. Menezes, Phys. Rev. C 89, 015805 (2014)

    Article  ADS  Google Scholar 

  49. S. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  50. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  51. S.L. Shapiro, S.A. Teukolski, Black Holes, White Dwarfs, and Neutron Stars (Wiley-Interscience, New York, 1983)

    Book  Google Scholar 

  52. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  53. R.C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford Press, Oxford, 1934)

    MATH  Google Scholar 

  54. F. Weber et al., Proc. Int. Astron. Union 291, 61 (2012)

    Article  Google Scholar 

  55. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  56. F. Rahaman et al., Gen. Relativ. Gravit. 44, 107 (2012)

    Article  ADS  Google Scholar 

  57. M. Kalam et al., Eur. Phys. J. C 72, 2248 (2012)

    Article  ADS  Google Scholar 

  58. N. Straumann, General Relativity and Relativistic Astrophysics (Springer, Berlin, 1984)

    Book  Google Scholar 

  59. C.G. Bohmer, T. Harko, Class. Quantum Gravity 23, 6479 (2006)

    Article  ADS  Google Scholar 

  60. P. Haensel, J.P. Lasota, J.L. Zdunik, Astron. Astrophys. 344, 151 (1999)

    ADS  Google Scholar 

  61. M.K. Jasim et al., Eur. Phys. J. C 78, 603 (2018)

    Article  ADS  Google Scholar 

  62. G.H. Bordbar, Z. Rezaei, Res. Astron. Astrophys. 13, 197 (2013)

    Article  ADS  Google Scholar 

  63. Eslam Panah et al., Astrophys. J. 848, 24 (2017)

    Article  ADS  Google Scholar 

  64. E. Ostgaard, Phys. Rep. 242, 313 (1994)

    Article  ADS  Google Scholar 

  65. I. Bombaci, (2002). arXiv:astro-ph/0201369

  66. T. Guver et al., Astrophys. J. 712, 964 (2010)

    Article  ADS  Google Scholar 

  67. T. Guver et al., Astrophys. J. 719, 1807 (2010)

    Article  ADS  Google Scholar 

  68. X.D. Li et al., Phys. Rev. Lett. 83, 3776 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G. H. Bordbar wishes to thank Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Bordbar.

Additional information

Communicated by G. Torrieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayanikhoo, F., Naficy, K. & Bordbar, G.H. Influence of strong magnetic field on the structure properties of strange quark stars. Eur. Phys. J. A 56, 2 (2020). https://doi.org/10.1140/epja/s10050-019-00004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00004-y

Navigation