Skip to main content
Log in

Finite temperature calculations for the bulk properties of a strange star using a many-body approach

  • Published:
Astrophysics Aims and scope

We have considered a hot strange star matter, just after the collapse of a supernova, as a composition of strange, up and down quarks to calculate the bulk properties of this system at finite temperature with the density dependent bag constant. To parameterize the density dependent bag constant, we use our results for the lowest-order constrained variational (LOCV) calculations of asymmetric nuclear matter. Our calculations for the structure properties of the strange star at different temperatures indicate that its maximum mass decreases by increasing the temperature. We have also compared our results with those of a fixed value of the bag constant. It can be seen that the density-dependent bag constant leads to higher values of the maximum mass and radius for the strange star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1, Springer, New York, 2007.

    Book  Google Scholar 

  2. N. K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, General Relativity, Springer, New York, 2000.

  3. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, IOP Publishing, Bristol, 1999.

    Google Scholar 

  4. N. Itoh, Prog. Theor. Phys., 44, 291, 1970.

    Article  ADS  Google Scholar 

  5. A. R. Bodmer, Phys. Rev. D4, 1601, 1971.

    ADS  Google Scholar 

  6. J. C. Collins and M. G. Perry, Phys. Rev. Lett., 34, 1353, 1975.

    Article  ADS  Google Scholar 

  7. E. Witten, Phys. Rev., D30, 272, 1984.

    ADS  MathSciNet  Google Scholar 

  8. C. Alcock, E. Farhi, and A. Olinto, Astrophy. J., 310, 261, 1986.

    Article  ADS  Google Scholar 

  9. P. Haensel, J. L. Zdunik, and R. Schaeffer, Astron. Astrophys., 160, 121, 1986.

    ADS  Google Scholar 

  10. C. Kettner, F. Weber, M. K. Weigel, and N. K.Glendenning, Phys. Rev., D51, 1440, 1995.

    ADS  Google Scholar 

  11. M. Prakash, J. M. Lattimer, A. W. Steiner, and D. Page, Nucl. Phys., A715, 835, 2003.

    ADS  Google Scholar 

  12. A. Chodos et al., Phys. Rev., D9, 3471, 1974.

    ADS  MathSciNet  Google Scholar 

  13. U. Heinz, Nucl. Phys., A685, 414, 2001; U.Heinz, M.Jacobs, nucl-th/0002042.

    ADS  Google Scholar 

  14. E. Farhi and R. L. Jaffe, Phys. Rev., D30, 2379, 1984.

    ADS  Google Scholar 

  15. C. Adami and G. E. Brown, Phys. Rev., 234, 1, 1993.

    Google Scholar 

  16. Xue-min Jin and B. K. Jenning, Phys. Rev., C55, 1567, 1997.

    ADS  Google Scholar 

  17. D. Blaschke, H. Grigorian, G. Poghosyan, C. D. Roberts, and S. Schmidt, Phys. Lett., B450, 207, 1999.

    ADS  Google Scholar 

  18. G. F. Burgio et al., Phys. Rev., C66, 025802, 2002.

    ADS  Google Scholar 

  19. G. H. Bordbar and M. Modarres, J. Phys. G: Nucl. Phys., 23, 1631, 1997.

    Article  ADS  Google Scholar 

  20. G. H. Bordbar and M. Modarres, Phys. Rev., C57, 714, 1998.

    ADS  Google Scholar 

  21. M. Modarres and G. H. Bordbar, Phys. Rev., C58, 2781, 1998.

    ADS  Google Scholar 

  22. G. H. Bordbar and M. Bigdeli, Phys. Rev., C75, 045804, 2007.

    ADS  Google Scholar 

  23. G. H. Bordbar and M. Bigdeli, Phys. Rev., C76, 035803, 2007.

    ADS  Google Scholar 

  24. G. H. Bordbar and M. Bigdeli, Phys. Rev., C77, 015805, 2008.

    ADS  Google Scholar 

  25. G. H. Bordbar and M. Bigdeli, Phys. Rev., C78, 054315, 2008.

    ADS  Google Scholar 

  26. M. Bigdeli, G. H. Bordbar, and Z. Rezaei, Phys. Rev., C80, 034310, 2009.

    ADS  Google Scholar 

  27. M. Bigdeli, G. H. Bordbar, and A. Poostforush, Phys. Rev., C82, 034309, 2010.

    ADS  Google Scholar 

  28. I. E. Lagaris and V. R. Pandharipande, Nucl. Phys., A359, 331, 1981; I.E.Lagaris, V.R.Pandharipande, Nucl. Phys., A359, 349, 1981.

    Google Scholar 

  29. S. L. Shapiro and S. A. Teukolski, Black Holes, White Dwarfs and Neutron Stars, Wiley, New York, 1983.

    Google Scholar 

  30. Z. Xiaoping, L. Xuewen, K. Miao, and Y. Shuhua, Phys. Rev., C70, 015803, 2004.

    ADS  Google Scholar 

  31. P. K. Sahu, hep-ph/9504367.

  32. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Body System, McGraw-Hill, New York, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Bordbar.

Additional information

Published in Astrofizika, Vol. 54, No. 2, pp. 309–322 (May 2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordbar, G.H., Poostforush, A. & Zamani, A. Finite temperature calculations for the bulk properties of a strange star using a many-body approach. Astrophysics 54, 277–289 (2011). https://doi.org/10.1007/s10511-011-9178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-011-9178-5

Keywords

Navigation