Skip to main content
Log in

Proto-strange quark star structure

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the newborn strange quark stars with constant entropy. We also use the MIT bag model to calculate the thermodynamic properties in two cases: the density-dependent bag constant and the fixed bag constant (\(B=90\) MeV). We show that the equation of state becomes stiffer by using the density-dependent bag constant and by increasing the entropy. Furthermore, we indicate that the adiabatic index of the system reaches to \(\frac{4}{3}\) at high densities. Later, we calculate the structure of a strange quark star using the equation of state and the general relativistic equations of hydrostatic equilibrium, the Tolman–Oppenheimer–Volkoff (TOV) equations. We show that the gravitational mass of the star decreases by increasing the entropy and the maximum gravitational mass is larger when we use the density-dependent bag constant at fixed central energy density. It is shown that the mass–radius relation for this system obeys \(M\, \propto \, R^{3}\) for different cases of the calculations. Finally, we see that for a given stellar mass considering the fixed bag constant, the maximum gravitational redshift of a strange quark star occurs at larger values of entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E Ostgaard Phys. Rep.242 4 (1994)

    Article  Google Scholar 

  2. M Camenzind Compact Objects in Astrophysics (Berlin: Springer) (2007)

    Google Scholar 

  3. R K Pathria Statistical Mechanics (Oxford: Pergamon Press) (1980)

    MATH  Google Scholar 

  4. D D Ivanenko and D F Kurdgelaidze Astrophys.1 251 (1965)

    Article  ADS  Google Scholar 

  5. D D Ivanenko and D F Kurdgelaidze Lett. Nuov. Cim.2 13 (1969)

    Article  ADS  Google Scholar 

  6. E Witten Phys. Rev.D30 272 (1984)

    ADS  Google Scholar 

  7. K Nakazato, K Sumiyoshi and S Yamada Astron. Astron. Astrophys.A50 558 (2013)

    Google Scholar 

  8. K Nakazato, K Sumiyoshi and S Yamada Phys. Rev.D77 103006 (2008)

    Article  ADS  Google Scholar 

  9. K Nakazato, K Sumiyoshi and S Yamada Astrophys. Astrophys. J.721 1284 (2010)

    Article  ADS  Google Scholar 

  10. N Itoh Prog. Theor. Phys.44 291 (1970)

    Article  ADS  Google Scholar 

  11. K Brecher and G Caporaso Nature259 377 (1976)

    Article  ADS  Google Scholar 

  12. F Ozel Nature441 1115 (2006)

    Article  ADS  Google Scholar 

  13. F Weber, M Orsaria, H Rodrigues and S H Yang Proceedings of the International Astronomical Union8 61 (2012)

    Article  Google Scholar 

  14. M Bocquet, S Bonazzola, E Gourgoulhon and J Novak Astron. Astrophys.301 757 (1995)

    ADS  Google Scholar 

  15. M Malheiro, S Ray, H J Mosquera Cuesta and J Dey Int. J. Mod. Phys.D16 489499 (2007)

    Google Scholar 

  16. M Prakash et al. Nucl. Phys.A715, 835c (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. S Shapiro and S Teukolsky Black Holes, White Dwarfs and Neutron Stars (Wiley: New York) (1983)

    Book  Google Scholar 

  18. G H Bordbar Int. J. Theor. Phys.41 309 (2002)

    Article  Google Scholar 

  19. H A Bethe et al. Nucl. Phys.A324 487 (1979)

    Article  ADS  Google Scholar 

  20. T Fischeret al. Astrophys. J.194 39 (2011)

    Article  Google Scholar 

  21. F Sandin and D Blaschke Phys. Rev.D75 125013 (2007)

    Article  ADS  Google Scholar 

  22. K W Wong and M C Chu Month. Not. Roy. Astron. Soc.350 42 (2004)

    Article  Google Scholar 

  23. V Dexheimer, J R Torres, D P Menezes Eur. Phys. J.C73 2569 (2013)

    Article  ADS  Google Scholar 

  24. G H Bordbar and A Peivand Res. Astron. Astrophys.11 851 (2011)

    Article  ADS  Google Scholar 

  25. G H Bordbar, A Poostforush and A Zamani Astrophys.54 277 (2011)

    Article  ADS  Google Scholar 

  26. G H Bordbar, H Bahri and F Kayanikhoo Res. Astron. Astrophys.12 1280 (2012)

    Article  ADS  Google Scholar 

  27. G H Bordbar, F Kayanikhoo and H Bahri Iranian J. Sci. Tech.A37 165 (2013)

    Google Scholar 

  28. G H Bordbar and Z Alizadeh Astrophys.57 130 (2014)

    Article  ADS  Google Scholar 

  29. G H Bordbar, M Bigdeli and T Yazdizadeh Int. Int. J. Mod. Phys.A21 5991 (2006)

    Article  ADS  Google Scholar 

  30. T Yazdizadeh and G H Bordbar Res. Astron. Astrophys.11 471 (2011)

    Article  ADS  Google Scholar 

  31. G H Bordbar and B Ziaei Res. Astron. Astrophys.12 540 (2012)

    Article  ADS  Google Scholar 

  32. H Li, X L Luo and H S Zong Phys. Rev.D82 065017 (2010)

    Article  ADS  Google Scholar 

  33. R Kjelsberg The Cooling of Neutron Stars (Lulu publication, Morrisville) (2012)

    Google Scholar 

  34. P Haensel, A Y Potekhin and D G Yakovlev Neutron Stars 1: Equation of State and Structure (Berlin: Springer) (2007)

    Book  Google Scholar 

Download references

Acknowledgements

We wish to thank Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Bordbar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, G.H., Sadeghi, F., Kayanikhoo, F. et al. Proto-strange quark star structure. Indian J Phys 95, 1061–1067 (2021). https://doi.org/10.1007/s12648-020-01770-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01770-y

Keywords

Navigation