Skip to main content
Log in

Electrostatic Accelerometers for Space Applications: Modern State and Prospects of Development

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper presents an overview of electrostatic accelerometers designed for various space projects. Engineering solutions aimed at high accuracy of measurements are described. Applications and development trends of electrostatic accelerometers, as well as the ways to improve their operation performance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Touboul, P., Metris, G., Selig, H., Le Traon, O., Bresson, A., Zahzam, N., Christophe, B., and Rodrique, M., Gravitation and geodesy with inertial sensors, from ground to space, Aerospace Lab, 2016, no. 12, pp. 1–16. doi:1012762/2016/AL12-11.

  2. Touboul, P., Foulon, B., and Willemeno, E., Electrostatic space accelerometers for present and future missions, Acta Astronautica, 1999, vol. 45, no. 10, pp. 605–617.

    Article  Google Scholar 

  3. Lange, B., The drag-free satellite, AIAA Journal, 1964, vol. 2, no. 9, pp. 1590–1606.

    Article  MATH  Google Scholar 

  4. Lange, W., Dietrich, R., The MESA accelerometer for space application, NTRS, 1990, vol. 14, pp. 1–28.

    Google Scholar 

  5. Bruinsma, S., Tamagnan, D., and Biancale, R., Atmospheric densities derived from CHAMP/STAR accelerometer observations, Planetary and Space Science, 2004, vol. 52, pp. 297–312.

    Article  Google Scholar 

  6. DeBra, D.B., Disturbance compensation system design, APL Technical Digest, 1973, vol. 12, no. 2, pp. 14–26.

    Google Scholar 

  7. A satellite freed of all but gravitational forces: TRIAD‑I, Journal of Spacecraft and Rockets, 1974, vol. 11, no. 9, pp. 637–644.

  8. Moe, K., De Bra, D.B., Van Patten, R.A., Moe, M.M., Oelker, G., and Ruggera, M.B., Jr., Exospheric density measurements from the zero-drag satellite Triad, Journal of Geophysical Research., 1976, vol. 81, pp. 3753–3761.

    Article  Google Scholar 

  9. Dassoulas, J., The TRIAD spacecraft, APL Technical Digest, 1973, vol. 12, no. 2, pp. 2–13.

    Google Scholar 

  10. Beaussier, J., Mainguy, A.M., Olivero, A., and Rolland, R., In-orbit performance of the Cactus accelerometer (D5B spacecraft), Acta Astronautica, 1977, vol. 4, no. 9–10, pp. 1085–1102.

    Article  Google Scholar 

  11. Bouttes, J., Delattre, M., The Cactus accelerometer in orbit, Sciences et Technologie, 1977, pp. 17–21.

    Google Scholar 

  12. Boudon, Y., Barlier, F., Bernard, A., Juillerat, R., Mainguy, A.M., and Walch, J.J., Synthese des resultants en vol de l’accelerometre CACTUS pour des accelerations inferieures a 10−9 g, Recherche Aerospatiale, 1978, no. 6.

  13. Touboul, P., Foulon, B., ASTRE accelerometer: Verification tests in Drop Tower Bremen, in Proceedings of the Drop Tower Days, Bremen, Germany, 10 July 1996. ONERA-T AP-96-124.

  14. Touboul, P., Foulon, B., Christophe, B., and Marque, J.P., CHAMP, GRACE, GOCE Instruments and Beyond in: Geodesy for Planet Earth, Berlin: Springer, 2012, pp. 215–221.

    Book  Google Scholar 

  15. Peshekhonov V.G., Stepanov O.A., Avgustov L.I., Blazhnov B.A., Bolotin Y.V. et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Methods and Equipment for Measuring the Earth’s Gravity Field), Peshekhonov V.G., Stepanov O.A., Eds., St. Petersburg: CSRI Elektropribor, 2017.

    Google Scholar 

  16. CHAMP—eoPortal Directory—Satellite Missions, URL: https://directory.eoportal.org/web/eoportal/ satellite-missions/g/grace.

  17. Touboul, P., Foulon, B., and LeClerc, G.M., STAR, The accelerometer of the geodesic mission CHAMP, Proceedings of the 49th IAF Congress, Melbourne, Australia, Sept. 28—Oct. 2, 1998, IAF-98-B.3.07.

  18. Ultra-Sensitive Accelerometry and Space Projects, URL: http://www.onera.fr/dmphen/ultra-sensitive-accelerometry/earth-planets-observation.php.

  19. Oberndorfer, H., Mueller, J., CHAMP Accelerometer and Star Sensor Data Combination, Berlin, Heidelberg: Springer-Verlag, 2003.

    Book  Google Scholar 

  20. Touboul, P., Willemenot, E., Foulon, B., and Josselin, V., Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution, Bollettino Di Geofisica Ed Applicata, 1999, vol. 40, no. 3–4, pp. 321–327.

    Google Scholar 

  21. Touboul, P., Foulon, B., 1998: Space accelerometer development and drop tower experiments, Space Forum, 1998, vol. 4, pp. 145–165.

  22. GRACE—eoPortal Directory—Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/ satellite-missions/g/grace

  23. Foulon, B., Christophe, B., and Bidel, Y., Two decades of electrostatic accelerometers for space geodesy: Past or future?, Proceedings of IAC 2011 (62nd International Astronautical Congress), Cape Town, South Africa, Oct. 3–7, 2011, IAC-11-B1.3.4.

  24. GRACE–FO–eoPortal Directory–Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/ satellite-missions/g/grace-fo

  25. Boulanger, D., Christophe, B., Foulon, B., Lebat, V., Liorzou, F., and Perrot, E., Design update and characteristics improvement of the electrostatic accelerometer for the GRACE FOLLOW-ON mission, Joint GSTM (GRACE Science Team Meeting)/SPP Final Colloquium, 17 Sept., 2012, GFZ, Potsdam, Germany.

  26. Christophe, B., Foulon, B., Liorzou, F., Lebat, V., Boulanger, D., Perrot, E., and Huynh, P.-A., Development status of the GRACE FOLLOW-ON accelerometer and first results of the Engineering Model testing, Proceedings of the GSTM (GRACE Science Team Meeting), Potsdam, Germany, Sept. 29–Oct. 1, 2014. URL: https://media.gfz-potsdam.de/gfz/sec12/GSTM-2014/GSTM2014-A2.zip.

  27. Amann, M., Gross, M., and Thamm, H., The GRACE FOLLOW-ON quiet electrical power system, E3S Web of Conferences, 2017, vol. 16, p. 13011. doi: 1051/e3sconf/20171613011.ESP 2016.

  28. Peidou, A., Pagiatakis, S., Gravity gradiometry with GRACE space missions: New opportunities for the geosciences, Journal of Geophysical Research: Solid Earth, 2019, vol. 124, pp. 9130–9147. https://doi.org/10.1029/2018JB016382.

    Article  Google Scholar 

  29. Peresty, R., Chvojka, M., and Fedosov, V., Use of the highly sensitive electrostatic accelerometer for orbit perturbation effects investigation on board of LEO spacecraft, Proceedings of the 61st IAC (International Astronautical Congress), Prague, Czech Republic, Sept. 27–Oct. 1, 2010, IAC-10. B1.3.2.

  30. SWARM—eoPortal Directory—Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/ satellite-missions/s/swarm

  31. LISA Pathfinder—eoPortal Directory—Satellite Missions.

  32. URL: https://directory.eoportal.org/web/eoportal/ satellite-missions/l/lisa-pathfinder

  33. Armano, M., Audley, H., Auger, G., Baird, J.T., Bassan, M., Binetruy, P., Born, M. et al., Sub-Femto-g free fall for space-based gravitational wave observatories: LISA Pathfinder results, Physical Review Letters, 2016, vol. 116, 231101.

    Article  Google Scholar 

  34. Gerndt, R., Fichte, W., and the LPF/DFACS Team, LISA Technology Package (LTP) system design and operation, Proc. 6th International LISA Symposium, Greenbelt, MD, USA, June 19–23, 2006.

  35. McNamara, P., Racca, G., Introduction to LISA Pathfinder, URL: https://lisa.nasa.gov/archive2011/Documentation/LISA-LPF-RP-0002_v1.1.pdf.

  36. Inertial sensor head shaken but not disturbed, ESA, December 12, 2013. URL: http://sci.esa.int/lisa-pathfinder/53349-inertial-sensor-head-shaken-but-not-disturbed.

  37. Sumner, T., Shaul, D., Schulte, M., Waschke, S., Hollington, D., and Araújo, H., LISA and LISA Pathfinder charging, Classical and Quantum Gravity, 2009, vol. 26, no. 9, 094006.

    Article  Google Scholar 

  38. Hollington, D., Baird, J., Sumner, T., and Wass, P., Characterising and testing deep UV LEDs for use in space applications, arXiv:1508.00812v1 [astro-ph.IM], Aug. 4, 2015.

  39. Optical Bench of LISA Pathfinder, ESA, March 11, 2015. URL: http://www.esa/int/spaceinimaghes/Images/2015/03/Optical bench of LISA Pathfinder.

  40. LISA Pathfinder – A Technology Experiment in Preparation of the Gravitational Wave Observatory eLISA, DLR, 2015. URL: http://www.dlr.de/rd/ en/desktopdefault.aspx/tabid-2448/3635_read-5451.

  41. Lenoir, B., Lévy, A., Foulon, B., Lamine, B., Christophe, B., and Reynaud, S., Electrostatic accelerometer with bias rejection for Gravitation and Solar System physics, Advances in Space Research, 2011, vol. 48, no. 7, pp. 1248–1257. https://doi.org/10.1016/j.asr.2011.06.005

    Article  Google Scholar 

  42. Christophe, B., Foulon, B., Liorzou, F., Lebat, V., Boulanger, D., Huynh, P-A., Zahzam, N., Bidel, Y., and Bresson, A., Status of development of the future accelerometers for next generation gravity, in: International Association of Geodesy Symposia, August 2018, pp. 1–5. https://doi.org/10.1007/1345_2018_42

  43. Lenoir, B., Christophe, B., and Reynaud, S., Unbiased acceleration measurements with an electrostatic accelerometer on a rotating platform, Advances in Space Research, 2013, vol. 51, no. 1, pp. 188–197. https://doi.org/10.1016/j.asr.2012.08.012

    Article  Google Scholar 

  44. Campergue, G., Gouhier, R., Horriere, D., and Thiriot, A., Machine for ultrasonic abrasion machining, US patent 4934103, 1990.

  45. Huynh, P-A., Liorzou, F., Christophe, B., Foulon, B., and Boulanger, D., Status of GAP: an electrostatic accelerometer for interplanetary fundamental physics, Proc. 65th International Astronautical Congress (IAC-14), Toronto, Canada, January 2014, IAC-14-A2.1.1.

  46. Gendre, D., Josselin, V., and Dussy, S., High-performance accelerometer for on-orbit spacecraft autonomy. Proc. AIAA Guidance, Navigation and Control Conference and Exhibit, 16–19 August, 2004, Providence, Rhode island, USA. https://doi.org/10.2514/6.2004-5432.

  47. Gao Fen, Zhou Ze-Bing, and Luo Jun, Feasibility for testing the equivalence principle with optical readout in space, Chinese Physics Letters, 2011, vol. 28, no. 8, 080401.

    Article  Google Scholar 

  48. Yanzheng Bai, Zhuxi Li, Ming Hu, Li Liu, Shaobo Qu, Dingyin Tan, Haibo Tu, Shuchao Wu, Hang Yin, Hongyin Li, and Zebing Zhou, Research and development of electrostatic accelerometers for space science missions at HUST, Sensors (Basel), 2017, vol. 17, no. 9, 1943.

    Article  Google Scholar 

  49. Sheng-Guo Guan, L. Tu, Ze-Bing Zhou, and Jun Luo, Proposal for testing non-Newtonian gravitational force in space, Journal of the Japan Society of Microgravity Application, 2007, vol, 24, pp. 86–90.

    Google Scholar 

  50. Fengtian Han, Tianyi Liu, Linlin Li, and Qiuping Wu, Design and fabrication of differential electrostatic accelerometer for space-station testing of the equivalence principle, Sensors (Basel), 2016, vol. 16, no. 8, 1262. https://doi.org/10.3390/s16081262

    Article  Google Scholar 

  51. Jun Luo, Li-Sheng Chen, Hui-Zong Duan, Yun-Gui Gong, Shoucun Hu, Jianghui Ji, et al., TianQin: A space-borne gravitational wave detector, Classical and Quantum Gravity, 2016, vol. 33, no. 3, 035010. https://doi.org/10.1088/0264-9381/33/3/035010

    Article  Google Scholar 

  52. Lin Cai, Zebing Zhou, Houtse Hsu, Fang Gao, Zhu Zhu, and Jun Luo, Analytical error analysis for satellite gravity field determination based on two-dimensional Fourier method, Journal of Geodesy, 2013, vol. 87, no. 5, pp. 417–426.

    Article  Google Scholar 

  53. Yanzheng Bai, Zebing Zhou, Haibo Tu, Shuchao Wu, et al., Capacitive position measurement for high-precision space inertial sensor, Frontiers of Physics in China, 2009, vol. 4, no. 2, pp. 205– 208.

    Article  Google Scholar 

  54. Li, G., Wu, S.C., Zhou, Z.B., Bai, Y.Z., Hu, M., and Luo, J., Design and validation of a high-voltage levitation circuit for electrostatic accelerometers, Review of Scientific Instruments, 2013, vol. 84, no. 12, 125004.

    Article  Google Scholar 

  55. Honguin Li, Yanzheng Bai, Ming Hu, Yingxin Luo, and Zebing Zhou, A novel controller design for the next generation space electrostatic accelerometer based on disturbance observation and rejection, Sensors (Basel), 2017, vol. 17, no. 1, 21.

    Article  Google Scholar 

  56. Li Liu, Yanzheng Bai, Zebing Zhou, H. Yin, D.Y. Tan, and Jeff Luo, Measurement of the effect of a thin discharging wire for an electrostatic inertial sensor with a high-quality-factor pendulum, Classical and Quantum Gravity, 2012, vol. 29, no. 5, 055010.

    Article  Google Scholar 

  57. Zhou, Z.B., Gao, S.W., and Luo, J., Torsion pendulum for the performance test of the inertial sensor for ASTROD-I, Classical and Quantum Gravity, 2005, vol. 22, no. 10, S537–542.

    Article  Google Scholar 

  58. Tu, H.B., Bai, Y.Z., Zhou, Z.B., Liu, L., Cai, L., and Luo, J., Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum, Classical and Quantum Gravity, 2010, vol. 27, no. 20, 205016.

    Article  MATH  Google Scholar 

  59. Bai, Y.Z., Fang, L., Luo, J., Yin, H., and Zhou, Z.B., Improving the measurement sensitivity of angular deflection of a torsion pendulum by an electrostatic spring, Classical and Quantum Gravity, 2015, vol. 32, no. 17, 175018.

    Article  Google Scholar 

  60. Shaobo Qu, Xiaomei Xia, Yanzheng Bai, Shuchao Wu, and Zebing Zhou, Self-calibration method of the bias of a space electrostatic accelerometer, Review of Scientific Instruments, 2016, vol. 87, no. 11, 114502.

    Article  Google Scholar 

  61. Ciani, G., Chilton, A., Apple, S., Olatunde, T., Aitken, M., Mueller, G., and Conklin, J., A new torsion pendulum for gravitational reference sensor technology development, Review of Scientific Instruments, 2017, vol. 88, no. 6, 064502.

    Article  Google Scholar 

  62. Liu, L., Ye, X., Wu, S.C., Bai, Y.Z., and Zhou, Z.B., A low-frequency vibration insensitive pendulum bench based on translation-tilt compensation in measuring the performances of inertial sensors, Classical and Quantum Gravity, 2015, vol. 32, no. 19, 195016.

    Article  Google Scholar 

  63. Hang Yin, Yanzheng Bai, Ming Hu, Li Liu, Jun Luo, D.Y. Tan, Hsien-Chi Yeh, and Zebing Zhou, Measurements of temporal and spatial variation of surface potential using a torsion pendulum and a scanning conducting probe, Physical Review D, 2014, vol. 90, 122001.

    Article  Google Scholar 

  64. Yongkang Zhang, Wenbo Dong, Wei Liu, Shimeng Lv, Zongfeng Li, and Yang Yang, Verification of the microgravity active vibration isolation system based on air floating platform and parabolic flight, Microgravity Science and Technology, 2017, vol. 29, no. 6, pp. 415–426.

    Article  Google Scholar 

  65. Wenbo Dong, Wenxiang Duan, Wei Liu, and Yongkang Zhang, Microgravity disturbance analysis on Chinese space laboratory, NPJ Microgravity, 2019, vol. 5, 18. https://doi.org/0.1038/s41526-019-0078-z

  66. Wei Liu, Yang Gao, Wenbo Dong, and Zongfeng Li, Flight test results of the microgravity active vibration isolation system in China’s Tianzhou-1 mission, Microgravity Science and Technology, 2018, vol. 30, no. 6, pp. 995–1009.

    Article  Google Scholar 

  67. Toda, R., Takeda, N., Murakoshi, T., Nakamura, S, and Esashi, M., Electrostatically levitated spherical 3-axis accelerometer, Proceedings of the IEEE 15th International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 20–24 January, 2002, pp. 710–713.

  68. Murakoshi, T., Endo, Y., Fukatsu, K., Nakamura, S., and Esashi, M., Electrostatically levitated ring-shaped rotational-gyro/accelerometer, Japanese Journal of Applied Physics, 2003, vol. 42, no. 4S, pp. 2468–2472. https://doi.org/10.1143 /JJAP.42.2468.

  69. Fengtian Han, Boqian Sun, Linlin Li, and Gaoyin Ma, A sensitive three-axis micromachined accelerometer based on an electrostatically suspended proof mass, Proc. IEEE Sensors, 03–06 November, 2013. https://doi.org/10.1109/ICSENS.2013.6688167

  70. Yonggang Yin, Boqian Sun, and Fengtian Han, Self-locking avoidance and stiffness compensation of a three-axis micromachined electrostatically suspended accelerometer, Sensors (Basel), 2016, vol. 16, no. 5, p. 711. https://doi.org/10.3390/s16050711.

    Article  Google Scholar 

  71. Ma, G.Y., Han, F.T., You, P.C., Zhang, L., and Yan, X.J., Experimental study of a low-g micromachined electrostatically suspended accelerometer for space applications, Microsystem Technologies, 2015; vol. 21, no. 1, pp. 29–39. https://doi.org/10.1007/s00542-013-1928-3

    Article  Google Scholar 

  72. Microscope – eoPortal Directory – Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/ satellite-missions/m/microscope.

  73. Touboul, P., Métris, G., Lebat, V., and Robert, A., The MICROSCOPE experiment, ready for in-orbit test of the equivalence principle, Classical and Quantum Gravity, 2012, vol. 29, no. 18, 184010.

    Article  Google Scholar 

  74. Rodrigues, M., Touboul, P., Chhun, R., Liorzou, F., and Metris, G., MICROSCOPE a micro-satellite for a major corner stone in fundamental physics, from qualification to launch, Small Satellites, Systems and Services Symposium 2016, May 2016, La Valette, Malta, hal-01441728.

  75. Chhun, R., Touboul, P., and Lebat, V., Two cylindrical masses in orbit for the test of the equivalence principle. Proceedings of the International Astronomical Union (IAU), Relativity in Fundamental Astronomy: Dynamics, Reference Frames and Data Analysis, 2009, vol. 5 no. S261, pp. 402–408. https://doi.org/10.1017/S174392130999069X.

  76. Nobili, A.M., Anselmi, A., Testing the equivalence principle in space after MICROSCOPE, arXiv: 1803.03313v1 [gr-gc], March 8, 2018.

  77. Hudson, D., Chhun, R., and Touboul, P., Development of a differential accelerometer to test the equivalence principle in the microscope mission, Acta Astronautica, 2005, vol. 57, no. 2–8, pp. 341–347. URL: www.elsevier.com/locate/actaastro.

  78. Touboul, P., Metris, G., Rodrigues, M., Andre, Y., et al., MICROSCOPE mission: First results of a space test of the equivalence principle, Physical Review Letters, 2017, vol. 119, 231101.

    Article  Google Scholar 

  79. Cipolla, V., Dubios, J.B., Pouilloux, P., and Prieur, P., Microscope: A microsatellite for equivalence principle measurement in space, Proceedings of the 25th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, August 8–11, 2011, SSC11-I-3.

  80. List, M., Selig, H., Bremer, S., and Lämmerzahl, C., Microscope –A space mission to test the equivalence principle, Proceedings of the International Astronomical Union, Relativity in Fundamental Astronomy: Dynamics, Reference Frames and Data Analysis, 2009, vol. 5 no. S261, pp. 423–425. https://doi.org/10.1017/S1743921309990731.

  81. Touboul, P., Microscope instrument development, lessons for GOCE, Space Science Reviews, 2003, vol. 108, pp. 393–408.

    Article  Google Scholar 

  82. Touboul, P., Foulon, B., Lafargue, L., and Metris, G., The MicroSCOPE Mission, Acta Astronautica, 2002, vol. 50, no. 7, pp. 433–443.

    Article  Google Scholar 

  83. GOCE—eoPortal Directory—Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/ satellite-missions/g/goce

  84. Evstifeev, M.I., The state of the art in the development of onboard gravity gradiometers, Gyroscopy and Navigation, 2017, vol. 8, no. 1, pp. 68–79. https://doi.org/10.1134/S2075108717010047

    Article  Google Scholar 

  85. Peshekhonov, V.G., Problem of the vertical deflection in high=precision navigation, Gyroscopy and Navigation, 2020, vol. 11, no. 4, pp. 255–262. https://doi.org/10.1134/S2075108720040094

    Article  Google Scholar 

  86. Lutz, M., Cornillon, L., Pambaguian, L, and Vitupier, Y., Evaluation of ultrastable carbon/carbon sandwich structures joined with ceramic cement, Proceedings of the 61st International Astronautical Congress (IAC), Prague, Czech Republic, Sept. 27–Oct. 1, 2010, IAC-10.C2.4.10.

  87. Marque, J.-P., Christophe, B., Liorzou, F., Bodovillé, G., Foulon, B., Guérard, J., and Lebat, V., The ultra sensitive accelerometers of the ESA GOCE mission, Proceedings of the 59th International Astronautical Congress (IAC), Glasgow, Scotland, UK, Sept. 29–Oct. 3, 2008, IAC-08-B1.3.7.

  88. Bodoville, G., Lebat, V., Development of the accelerometer sensor heads for the GOCE satellite: Assessment of the critical items and qualification, Proceedings of the 61st International Astronautical Congress (IAC), Prague, Czech Republic, Sept. 27–Oct. 1, 2010, IAC-10.C2.1.13.

  89. Zhu, Z., Zhou, Z.B., Cai, L., Bai, Y.Z., and Luo, J., Electrostatic gravity gradiometer design for the future mission, Advances in Space Research, 2013, vol. 51, no. 12, pp. 2269–2276.

    Article  Google Scholar 

  90. Visser, P.N.A.M., Using the GOCE star trackers for validating the calibration of its accelerometers, Journal of Geodesy, 2018, vol. 92, no. 8, pp. 833–846. https://doi.org/10.1007/s00190-017-1097-8

    Article  Google Scholar 

  91. Christophe, B., Boulanger, D., Foulon, B., Huynh, P.-A., Lebat, V., Liorzou, F., and Perrot, E., A new generation of ultra-sensitive electrostatic accelerometers for Grace Follow-on and towards the next generation gravity missions, Acta Astronautica, 2015, vol. 117, pp. 1–7.

    Article  Google Scholar 

  92. Bidel, Y., Carraz, O., Charrière, R., Cadoret, M., Zahzam, N., and Bresson, A., Compact cold atom gravimeter for field applications, Applied Physics Letters, 2013, vol. 102, no. 14, 144107.

    Article  Google Scholar 

  93. Freier, C., Hauth, M., Schkolnik, V., Leykauf, B., Schilling, M., Wziontek, H., Scherneck, H.-G., Mueller, J., and Peters, A., Mobile quantum gravity sensor with unprecedented stability, Journal of Physics: Conference Series, 2016, vol. 723, 012050.

    Google Scholar 

  94. Lautier, J., Volodimer, L., Hardin, T., Merlet, S., Lours, M., Santos, F.P.D., and Landragin, A., Hybridizing matter-wave and classical accelerometers, Applied Physics Letters, 2014, vol. 105, no. 14, 144102.

    Article  Google Scholar 

  95. Carraz, O., Siemes, C., Massotti, L., Haagmans, R., and Silvestrin, P., Measuring the Earth’s gravity field with cold atom interferometers, arXiv:1506.03989 [physics, physics: quant-ph], June 12, 2015. URL: http://arxiv.org/abs/1506.03989.

  96. Foulon, B., Christophe, B., and Marque, J-P., Gremlun: a miniaturized gravity gradiometer for planetary and small bodies exploration, Proc. 59th International Astronautical Congress (IAC), 2008, Space Exploration Symposium (A3)/Small Bodies Missions and Technologies, 2008, paper ID 737.

  97. Dubovskoi, V.B., Belyaev, M.Yu., Leont’ev, V.I., Manukin, A.B., Obydennikov, S.S., and Pshenyanik, V.G., Present state and prospects of satellite accelerometry and gradiometry, Al’manakh sovremennoi metrologii, 2015, no. 3, pp. 84–96.

  98. Dubovskoi, V.B., Pshenyanik, V.G., Boev, I.A., and Leont’ev, V.I., Prospects of creating gravitational inertial and gradiometric equipment for a space-based global geodesic monitoring system, VII Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Aktual’nye problemy sozdaniya kosmicheskikh system distantsionnogo zondirovaniya Zemli” (Proc. of the 7th International Scientific and Engineering Conference “Current Problems in Developing Space-Based Systems for Remote Sensing of the Earth”), Moscow, 2019.

  99. Sorrentino, F., Bongs, K., Boyer, P., et al., The Space Atom Interferometer project: status and prospects, Journal of Physics: Conference Series, 2011, vol. 327, 012050. https://doi.org/10.1088/1742-6596/327/1/0120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Krasnov or V. G. Rozentsvein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, A.A., Rozentsvein, V.G. Electrostatic Accelerometers for Space Applications: Modern State and Prospects of Development. Gyroscopy Navig. 13, 59–81 (2022). https://doi.org/10.1134/S2075108722020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108722020043

Keywords:

Navigation