Skip to main content
Log in

Experimental study of a low-g micromachined electrostatically suspended accelerometer for space applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper a silicon-based micromachined electrostatically suspended accelerometer (Si-MESA), which employs a free parallelepiped proof mass suspended in six degree of freedom, is designed, fabricated and experimentally tested oriented to space applications. The Si-MESA is a glass/silicon/glass sandwich structure fabricated by bulk micromachining, which mainly consists of two anodic bonding steps, a deep reactive ion etching and a wet etching of Al sacrificial layer. The motion of the proof mass with comb teeth on four outer sides is fully servo-controlled with capacitive position sensing and electrostatic suspension. To facilitate ground test of this low-g Si-MESA against the gravity, the input range in the vertical z axis is set to larger than 2 g, while the range in the lateral x and y axes are as low as on the order of several to tens millesimal of the gravity (mg) to achieve higher resolution for potential space applications. The ground test yields specific performances in the lateral x and y axes as follows: the noise floor of 36.8 μg/Hz1/2 and 0.116 mg/Hz1/2, as well as the resolution of 1.454 × 10−5 g and 1.432 × 10−4 g, respectively. The three-axis Si-MESA features extremely low range, high resolution, and long life-span, and has favorable space application prospects such as drag-free control of micro&small satellite and weak gravity measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Cui F, Liu W, Chen WY, Zhang WP, Wu XSH (2011) Design, fabrication and levitation experiments of a micromachined electrostatically suspended six-axis accelerometer. Sensors 11:206–234. doi:10.3390/s111211206

    Google Scholar 

  • Damrongsak B, Kraft M, Rajgopal S, Mehregany M (2008) Design and fabrication of a micromachined electrostatically suspended gyroscope. In: Proc. IMechE C J Mech Eng Sci, pp 53–63. doi: 10.1243/09544062JMES665

  • Han FT, Wu QP, Wang L (2010) Experimental study of a variable-capacitance micro-motor with electrostatic suspension. J Micromech Microeng 20(115034):1–9. doi:10.1088/0960-1317/20/11/115034

    Google Scholar 

  • Han FT, Liu YF, Wang L, Ma GY (2012) Micromachined electrostatically suspended gyroscope with a spinning ring-shaped rotor. J Micromech Microeng 22(105032):1–14. doi:10.1088/0960-1317/22/10/105032

    Google Scholar 

  • Houlihan R, Kraft M (2002) Modeling of an accelerometer based on a levitated proof mass. J Micromech Microeng 12(4):495–503. doi:10.1088/0960-1317/12/4/325

    Article  Google Scholar 

  • Hudson D, Chhun R, Touboul P (2007) Development status of the differential accelerometer for the MICROSCOPE mission. Adv Space Res 39:307–314. doi:10.1016/j.asr.2005.10.040

    Article  Google Scholar 

  • Kraft M, Farooqui MM, Evans AGR (2011) Modelling and design of an electrostatically levitated disk for inertial sensing applications. J Micromech Microeng 11(4):423–427. doi:10.1088/0960-1317/11/4/324

    Article  Google Scholar 

  • Levi BG (2003) Grace satellites start to map earth’s gravity field. Phys Today 56:2–18. doi:10.1063/1.1564334

    Google Scholar 

  • Murakoshi T, Fukatsu K, Nakamura S, Esashi M (2003) Electrostatically levitated ring-shaped rotational gyro/accelerometer. Jpn J Appl Phy 42:2468–2472. doi:10.1143/JJAP.42.2468

    Article  Google Scholar 

  • Muzi D, Allsio A (2003) GOCE: the first core earth explorer of ESA’s observation programme. Acta Astr 54:167–175. doi:10.1016/S0094-5765(02)00296-5

    Article  Google Scholar 

  • Nakamura S (2005) MEMS inertial sensor toward higher accuracy and multi-axis sensing. In: Proc. of 4th IEEE conf. on sensors, IEEE, pp 939–942. doi:10.1109/ICSENS.2005.1597855

  • Navid Y, Khalil N (2000) An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process. J MEMS 9(4):544–550. doi:10.1109/84.896777

    Article  Google Scholar 

  • Racca GD, McNamara PW (2010) The LISA pathfinder mission: tracing Einstein’s geodesics in space. Space Sci Rev 151:159–181. doi:10.1007/s11214-009-9602-x

    Article  Google Scholar 

  • Takeda N (2000) Ball semiconductor technology and its application to MEMS. In: Proc. of 13th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS), pp 11–16. doi:10.1109/MEMSYS.2000.838482

  • Toda R, Takeda N, Murakoshi T, Nakamura S, Esashi M (2002) Electrostatically levitated spherical 3-axis accelerometer. In: Proc. of 15th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS), pp 710–713. doi:10.1109/MEMSYS.2002.984369

  • Touboul P (2001) Space accelerometers: present status. In: Lämmerzahl Claus (ed) Gyros, clocks interferometers. Testing relativistic gravity in space. Springer, Berlin, pp 273–291

    Chapter  Google Scholar 

  • Touboul P, Foulon B, Willemenot E (1999) Electrostatic space accelerometers for present and future missions. Acta Astr 45:605–617. doi:10.1016/S0094-5765(99)00132-0

    Article  Google Scholar 

  • Visser PNAM (2008) Exploring the possibilities for star-tracker assisted calibration of the six individual GOCE accelerometers. J Geodesy 82(10):591–600. doi:10.1007/s00190-007-0205-6

    Article  MathSciNet  Google Scholar 

  • Visser PNAM, Ijssel J (2003) Verification of CHAMP accelerometer observations. Adv Space Res 31(8):1905–1910. doi:10.1016/S0273-1177(03)00165-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation (Grant No. 41074049) and the Aviation Science Foundation of China (Grant No. 20100858005).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Y. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, G.Y., Han, F.T., You, P.C. et al. Experimental study of a low-g micromachined electrostatically suspended accelerometer for space applications. Microsyst Technol 21, 29–39 (2015). https://doi.org/10.1007/s00542-013-1928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1928-3

Keywords

Navigation