Skip to main content
Log in

Determination of the Microstructure of Decellularized Dermal Scaffolds

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

One of the most important aspects of regenerative medicine is the selection of the scaffold—the biological skeleton of the tissue-engineering structure. To reproduce the structure and properties of damaged tissue and maintain the cell adhesion and proliferation, it is optimal to use scafflds obtained by decellularization of native organs with subsequent recellularization of various cell lines. Using the methods of environmental scanning electron microscopy and scanning pulsed ultrasound microscopy, the microstructure of native and decellularized matrixes of dermal tissues was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. A. Paramonov, Ya. O. Poremskii, and V. G. Yablonskii, Burns (Spetslit, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  2. M. Yu. Aleksashin, Skor. Med. Pomoshch’ 7, 221 (2006).

    Google Scholar 

  3. V. V. Azolov and G. I. Dmitriev, Surgical Treatment of Burn Effects (NNIITO, Nizh. Novgorod, 1995) [in Russian].

    Google Scholar 

  4. K. M. Krylov, Rehabilitation of Burn Victims, The School-Book (OGK, St. Petersburg, 2002), No. 8 [in Russian].

  5. J. P. Barret, Brit. Med. J. 329, 274 (2004).

    Article  Google Scholar 

  6. V. P. Deikalo and A. N. Tolstik, Nov. Khirurg., No. 5, 577 (2015).

  7. D. G. Papaskiri, N. A. Efimenko, A. A. Makharashvili, et al., Transplantologiya, Nos. 3–4, 68 (2018).

    Google Scholar 

  8. J. P. Barret, Brit. Med. J. 329, 274 (2004).

    Article  Google Scholar 

  9. Z. J. Xin, Z. Qin, N. Y. Wen, et al., Burns 36, 1296 (2010).

    Article  Google Scholar 

  10. A. A. Alekseev, M. G. Krutikov, and A. M. Rakhaev, Ann. Khirurg., No. 1, 59 (2001).

  11. S. F. Badylak, Anat. Rec. B New Anat. 287, 36 (2005).

    Article  Google Scholar 

  12. A. Atala, J. Tissue Eng. Regen. Med. 1, 83 (2007).

    Article  CAS  Google Scholar 

  13. A. Atala, S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik, Lancet 367, 1241 (2006).

    Article  Google Scholar 

  14. A. Kanematsu, S. Yamamoto, M. Ozekiet, et al., Biomaterials 25, 4513 (2004).

    Article  CAS  Google Scholar 

  15. S. F. Badylak, D. Taylor, and K. Uygun, Ann. Rev. Biomed. Eng. 13, 27 (2011).

    Article  CAS  Google Scholar 

  16. M. T. Conconi, P. de Coppi, S. Bellini, et al., Biomaterials 26, 2567 (2005).

    Article  CAS  Google Scholar 

  17. T. W. Gilbert, J. Cell. Biochem. 113, 2217 (2012).

    Article  CAS  Google Scholar 

  18. E. A. Gubareva, S. Sjöqvist, I. V. Gilevich, et al., Biomaterials, No. 77, 320 (2016).

    Article  CAS  Google Scholar 

  19. P. M. Baptista, G. Orlo, S.-H. Mirmalek-Sani, et al., in Proceedings of the IEEE Conference of Engineering in Medicine and Biology Society,2009, p. 6526.

  20. H. C. Ott, T. S. Matthiesen, S. K. Goh, et al., Nat. Med. 14, 213 (2008).

    Article  CAS  Google Scholar 

  21. P. B. Milan, A. Pazoukid, M. T. Joghataeia, et al., Methods (San Diego, CA) (2019). https://doi.org/10.1016/j.ymeth.2019.07.005

  22. J.-C. Luo, W. Chen, X.-H. Chen, et al., Biomaterials 32, 706 (2011).

    Article  CAS  Google Scholar 

  23. Q. Zhang, J. A. Johnson, L. W. Dunne, et al., Acta Biomater. 35, 166 (2016).

    Article  CAS  Google Scholar 

  24. S. Wu, Y. Liu, S. Bharadwaj, A. Atala, and Y. Zhang, Biomaterials 32, 1317 (2011).

    Article  CAS  Google Scholar 

  25. B. Mendoza-Novelo, E. E. Avila, J. V. Cauich-Rodriguez, et al., Acta Biomater. 7, 1241 (2011).

    Article  CAS  Google Scholar 

  26. L. Muscariello, F. Rosso, G. Marino, et al., J. Cell Physiol. 205, 328 (2005).

    Article  CAS  Google Scholar 

  27. B. Ruozi, G. Tosi, E. Leo, et al., Mater. Sci. Eng. C 27, 802 (2007).

    Article  CAS  Google Scholar 

  28. D. J. Stokes, S. M. Rea, A. E. Porter, et al., Mater. Res. Soc. Symp. Proc. 711, 113 (2002).

    CAS  Google Scholar 

  29. J. Chen, M. A. Birch, and S. J. Bull, J. Mater. Sci. Mater. Med. 21, 277 (2010).

    Article  CAS  Google Scholar 

  30. C. Maia-Brigagão and W. de Souza, Micron 43, 494 (2012).

    Article  Google Scholar 

  31. A. Bridier, T. Meylheuc, and R. Briandet, Micron 48, 65 (2013).

    Article  CAS  Google Scholar 

  32. A. M. Gatti, J. Kirkpatrick, A. Gambarelli, et al., J. Mater. Sci. Mater. Med. 19, 1515 (2008).

    Article  CAS  Google Scholar 

  33. A. H. Morris, J. Chang, and T. R. Kyriakides, Biores. Open Access 5, 177 (2016).

    Article  CAS  Google Scholar 

  34. E. Morokov, E. Khramtsova, E. Kuevda, et al., Artif. Organs 43, 1104 (2019). https://doi.org/10.1111/aor.13516

    Article  CAS  Google Scholar 

  35. E. Khramtsova, E. Morokov, E. Lukanina, et al., Polym. Eng. Sci. 57, 697 (2017). https://doi.org/10.1002/pen.24617

    Article  CAS  Google Scholar 

Download references

Funding

The study work was supported by the Russian Science Foundation (grant no. 17-13-01376) on the topic “Visualization of Adhesion and Proliferation of Stromal and Epithelial Cells on Various Types of Matrices based on Biocompatible Polymers.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Vasiliev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamyshinsky, R.A., Antipova, K.G., Kuevda, E.V. et al. Determination of the Microstructure of Decellularized Dermal Scaffolds. Nanotechnol Russia 14, 362–366 (2019). https://doi.org/10.1134/S1995078019040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019040074

Navigation