Skip to main content

Advertisement

Log in

Nanomechanical characterization of tissue engineered bone grown on titanium alloy in vitro

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Intensive work has been performed on the characterization of the mechanical properties of mineralised tissues formed in vivo. However, the mechanical properties of bone-like tissue formed in vitro have rarely been characterised. Most research has either focused on compact cortical bone or cancellous bone, whilst leaving woven bone unaddressed. In this study, bone-like mineralised matrix was produced by osteoblasts cultured in vitro on the surface of titanium alloys. The volume of this tissue-engineered bone is so small that the conventional tensile tests or bending tests are implausible. Therefore, nanoindentation techniques which allow the characterization of the test material from the nanoscale to the microscale were adopted. These reveal the apparent elastic modulus and hardness of the calcospherulite crystals (a representative element for woven bone) are 2.35 ± 0.73 and 0.41 ± 0.15 GPa, respectively. The nanoscale viscoelasticity of such woven bone was further assessed by dynamic indentation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carr BC, Goswami T. Knee implants–review of models and biomechanics. Mater Des. 2009;30:398–413.

    CAS  Google Scholar 

  2. Banerjee R, Nag S, Fraser HL. A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Mater Sci Eng C. 2005;25:282–9.

    Article  Google Scholar 

  3. Gallardo-Moreno AM, Pacha-Olivenza MA, Saldana L, Perez-Giraldo C, Bruque JM, Vilaboa N, et al. In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater. 2009;5:181–92.

    Article  CAS  PubMed  Google Scholar 

  4. Lee HU, Jeong YS, Park SY, Jeong SY, Kim HG, Cho CR. Surface properties and cell response of fluoridated hydroxyapatite/TiO2 coated on Ti substrate. Curr Appl Phys. 2009;9:528–33.

    Article  ADS  Google Scholar 

  5. Boivin G, Bala Y, Doublier A, Farlay D, Ste-Marie LG, Meunier PJ, et al. The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone. 2008;43:532–8.

    Article  CAS  PubMed  Google Scholar 

  6. Fan Z, Rho JY, Swadener JG. Three-dimensional finite element analysis of the effects of anisotropy on bone mechanical properties measured by nanoindentation. J Mater Res. 2004;19:114–23.

    CAS  ADS  Google Scholar 

  7. Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthoped Res. 2002;4:806–10.

    Article  Google Scholar 

  8. Fan Z, Rho JY. Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J Biomed Mater Res A. 2002;67:208–14.

    Google Scholar 

  9. Hengsberger S, Enstroem J, Peyrin F, Nuzzo S, Zysset P. How is the indentation modulus of bone tissue related to its macroscopic elastic response? A validation study. J Biomech. 2003;36:1503–9.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson WM, Rapoff AJ. Microindentation in bone: hardness variation with five independent variables. J Mater Sci: Mater Med. 2007;18:591–7.

    Article  CAS  Google Scholar 

  11. Mullins LP, Bruzzia MS, McHugha PE. Calibration of a constitutive model for the post-yield behaviour of cortical bone. J Mech Behav Biomed Mater. 2009;2:460–70.

    Article  CAS  PubMed  Google Scholar 

  12. Lewis G, Xu J, Dunne N, Daly C, Orr J. Evaluation of an accelerated aging medium for acrylic bone cement based on analysis of nanoindentation measurements on laboratory-prepared and retrieved specimens. J Biomed Mater Res B–Appl Biomater. 2007;81:544–50.

    PubMed  Google Scholar 

  13. Oyen ML, Ko CC. Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone. J Mater Sci: Mater Med. 2007;18:623–8.

    Article  CAS  Google Scholar 

  14. Oyen ML, Ferguson VL, Bembey AK, Bushby AJ, Boyde A. Composite bounds on the elastic modulus of bone. J Biomech. 2008;41:2585–8.

    Article  PubMed  Google Scholar 

  15. Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials. 1997;18:1325–30.

    Article  CAS  PubMed  Google Scholar 

  16. Evans FG. Stress and strain in bone: their relation to fractures and osteogenesis. Springfield, IL: Charles C. Thomas; 1957.

    Google Scholar 

  17. Hing KA, Best SM, Tanner KE, Revell PA, Bonfield W. Biomechanical assessment of bone ingrowth in porous hydroxyapatite. J Mater Sci: Mater Med. 1997;8:731–6.

    Article  CAS  Google Scholar 

  18. Currey JD. The mechanical properties of bone. Clin Orthop Relat Res. 1970;73:210–31.

    Article  Google Scholar 

  19. Ascenzi A, Bonucci E, Simkin A. An approach to the mechanical properties of single osteonic lamellae. J Biomech. 1973;6:227–35.

    Article  CAS  PubMed  Google Scholar 

  20. Hainsworth SV, Page TF. Nanoindentation studies of chemomechanical effects in thin-film coated systems. Surf Coat Technol. 1994;68:571–5.

    Article  Google Scholar 

  21. Chen J, Bull SJ. Indentation fracture and toughness assessment for thin optical coatings on glass. J Phys D Appl Phys. 2007;40:5401–17.

    Article  CAS  ADS  Google Scholar 

  22. Chen J, Bull SJ. The investigation of creep of electroplated Sn and Ni–Sn coating on copper at room temperature by nanoindentation. Surf Coat Technol. 2009;203:1609–17.

    Article  CAS  Google Scholar 

  23. Bokhari MA, Akay G, Zhang SG, Birch MA. The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogely–polyHIPE polymer hybrid material. Biomaterials. 2005;26:5198–208.

    Article  CAS  PubMed  Google Scholar 

  24. Midura RJ, Vasanji A, Su X, Wang A, Midura SB, Gorski JP. Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone. 2007;41:1005–16.

    Article  CAS  PubMed  Google Scholar 

  25. Warren OL, Wyrobek TJ. Nanomechanical property screening of combinatorial thin-film libraries by nanoindentation. Meas Sci Technol. 2005;16:100–10.

    Article  CAS  ADS  Google Scholar 

  26. Chen J, Bull SJ. Assessment of the toughness of thin coatings using nanoindentation under displacement control. Thin Solid Films. 2006;494:1–7.

    Article  CAS  ADS  Google Scholar 

  27. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.

    Article  CAS  ADS  Google Scholar 

  28. Syed-Asif SA, Wahl KJ, Colton RJ. Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev Sci Instrum. 1999;70:2408–13.

    Article  ADS  Google Scholar 

  29. Chaudhry B, Ashton H, Muhamed A, Yost M, Bull SJ, Frankel D. Nanoscale viscoelastic properties of an aligned collagen scaffold. J Mater Sci: Mater Med. 2009;20:257–63.

    Article  CAS  Google Scholar 

  30. Saruwatari L, Aita H, Butz F, Nakamura HK, Ouyang J, Yang Y, et al. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro–and ultrastructure. J Bone Miner Res. 2005;20:2002–16.

    Article  CAS  PubMed  Google Scholar 

  31. Malzbender J. Comment on “Nanoindentation and whole-bone bending estimates of material properties in bones from senescence accelerated mouse SAMP6”. J Biomech. 2005;38:1191–2.

    Article  PubMed  Google Scholar 

  32. Comelekoglu U, Bagis S, Yalin S, Ogenler O, Yildiz A, Ozlen-Sahin N, et al. Biomechanical evaluation in osteoporosis: ovariectomized rat model. Clin Rheumatol. 2007;26:380–4.

    Article  PubMed  Google Scholar 

  33. Leong PL, Morgan EF. Measurement of fracture callus material properties via nanoindentation. Acta Biomater. 2008;4:1569–75.

    Article  CAS  PubMed  Google Scholar 

  34. Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J. 2006;90:3012–8.

    Article  CAS  PubMed  Google Scholar 

  35. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Wejie and T.Y. Yang are acknowledged for cell culture. Prof. S. Roy is acknowledged for the help of surface analysis of Ti alloy. Mrs. Pauline Carrick at ACMA is acknowledged for the technical assistance of ESEM and EDX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinju Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Birch, M.A. & Bull, S.J. Nanomechanical characterization of tissue engineered bone grown on titanium alloy in vitro. J Mater Sci: Mater Med 21, 277–282 (2010). https://doi.org/10.1007/s10856-009-3843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3843-9

Keywords

Navigation