Skip to main content
Log in

Environmental Scanning Electron Microscopy of Dermal Fibroblasts on Various Types of Polymer Scaffolds

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

With the progress in tissue engineering, the need for deep understanding of the interaction between individual cells and cellular systems with biocompatible polymer scaffolds has become obvious. This requires data on the adhesion and proliferation of cells on the scaffolds. Environmental scanning electron microscopy makes it possible to increase the pressure and humidity in a microscope chamber, thereby bringing the experimental conditions close to environmental. Scanning electron microscopy study of dermal fibroblasts is illustrated by the example of several scaffolds of different morphologies, including sponges, films, and nonwoven materials based on poly(L-)lactide, polycaprolactone, and a poly(L-)lactide-co-polycaprolactone. The data obtained show that the proposed method is promising for studying cell structures on polymer scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. K. I. Lukanina, T. E. Grigoriev, S. V. Krasheninnikov, et al., Carbohydr. Polym. 191, 119 (2018). https://doi.org/10.1016/j.carbpol.2018.02.061

    Article  Google Scholar 

  2. O. A. Romanova, T. H. Tenchurin, T. S. Demina, et al., Cell Prolif. 52 (3), 1 (2019). https://doi.org/10.1111/cpr.12598

    Article  Google Scholar 

  3. T. K. Tenchurin, L. P. Istranov, E. V. Istranova, et al., Nanotechnol. Russ. 13 (9–10), 476 (2018). https://doi.org/10.1134/S1995078018050154

    Article  Google Scholar 

  4. A. A. Mikhutkin, R. A. Kamyshinsky, T. K. Tenchurin, et al., BioNanoScience 8 (2), 511 (2018). https://doi.org/10.1007/s12668-017-0493-0

    Article  Google Scholar 

  5. G. A. Horridge and S. L. Tamm, Science 163 (3869), 817 (1969). https://doi.org/10.1126/science.163.3869.817

    Article  ADS  Google Scholar 

  6. H. Moor, Cryotechniques in Biological Electron Microscopy, Ed. by R. A. Steinbrecht and K. Zierold (Springer, Berlin, 1987), p. 175. https://doi.org/10.1007/978-3-642-72815-0_8

    Book  Google Scholar 

  7. G. D. Danilatos, J. Microsc. 160 (1), 9 (1990). https://doi.org/10.1111/j.1365-2818.1990.tb03043.x

    Article  Google Scholar 

  8. G. D. Danilatos, Microsc. Res. Tech. 25 (5–6), 354 (1993). https://doi.org/10.1002/jemt.1070250503

    Article  Google Scholar 

  9. L. Muscariello, F. Rosso, G. Marino, et al., J. Cell. Physiol. 205 (3), 328 (2005). https://doi.org/10.1002/jcp.20444

    Article  Google Scholar 

  10. B. Ruozi, G. Tosi, E. Leo, et al., Mater. Sci. Eng. C 27 (4), 802 (2007). https://doi.org/10.1016/j.msec.2006.08.018

    Article  Google Scholar 

  11. D. J. Stokes, S. M. Rea, A. E. Porter, et al., Mater. Res. Soc. Symp. Proc. 711, 113 (2002). https://doi.org/10.1557/proc-711-ff6.5.1

    Article  Google Scholar 

  12. J. Chen, M. A. Birch, and S. J. Bull, J. Mater. Sci. Mater. Med. 21 (1), 277 (2010). https://doi.org/10.1007/s10856-009-3843-9

    Article  Google Scholar 

  13. C. Maia-Brigagão and W. de Souza, Micron 43 (2–3), 494 (2012). https://doi.org/10.1016/j.micron.2011.08.008

    Article  Google Scholar 

  14. A. Bridier, T. Meylheuc, and R. Briandet, Micron 48, 65 (2013). https://doi.org/10.1016/j.micron.2013.02.013

    Article  Google Scholar 

  15. A. M. Gatti, J. Kirkpatrick, A. Gambarelli, et al., J. Mater. Sci. Mater. Med. 19 (4), 1515 (2008). https://doi.org/10.1007/s10856-008-3385-6

    Article  Google Scholar 

  16. D. J. Stokes, Adv. Eng. Mater. 3 (3), 126 (2001). https://doi.org/10.1002/1527-2648(200103)3:3<126::AID-ADEM126>3.0.CO;2-B

    Article  Google Scholar 

  17. A. Ivanova, N. Mitiurev, A. Cheremisin, et al., Sci. Rep. 9 (1), 1 (2019). https://doi.org/10.1038/s41598-019-47139-y

    Article  Google Scholar 

  18. J. E. McGregor and A. M. Donald, J. Phys. Conf. Ser. 241, 012021 (2010). https://doi.org/10.1088/1742-6596/241/1/012021

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 17-13-01376 “Visualization of Adhesion and Proliferation of Stromal and Epithelial Cells on Different Biocompatible Polymer-Based Scaffolds.” The porous materials were fabricated under the financial support of NRC “Kurchatov Institute” (order no. 1362 from June 25, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Vasiliev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamyshinsky, R.A., Patsaev, T.D., Tenchurin, T.K. et al. Environmental Scanning Electron Microscopy of Dermal Fibroblasts on Various Types of Polymer Scaffolds. Crystallogr. Rep. 65, 762–765 (2020). https://doi.org/10.1134/S1063774520050107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520050107

Navigation