Skip to main content

Abstract

Biomaterials science encompasses elements of medicine, biology, chemistry, materials, and tissue engineering. They are engineered to interact with biological systems to treat, augment, repair, or replace lost tissue function. The choice of biomaterial depends on the procedure being performed, the severity of the patient’s condition, and the surgeon’s preference. Prostheses made from natural-derived biomaterials are often derived from decellularized extracellular matrix (ECM) of animal (xenograft) or human (allograft) origin. Advantages of using ECM include their resemblance in morphology and three-dimensional structures with that of tissue to be replaced. Due to this, scientists all over are now focusing on naturally derived biomaterials which have been shown to possess several advantages compared to synthetic ones, owing to their biocompatibility, biodegradability, and remodeling properties. Advantages of a naturally derived biomaterial enhance their application for replacement or restoration of damaged organs/tissues. They adequately support cell adhesion, migration, proliferation, and differentiation. Naturally derived biomaterials can induce extracellular matrix formation and tissue repair when implanted into a defect by enhancing attachment and migration of cells from surrounding environment. In the current chapter, we will focus on the natural and synthetic dermal matrix development and all of the progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaire E, Brunewal P, Mandet C, Becquemin J, Michel J (1997) The immunogenicity of extracellular matrix in arterial xenografts. Surgery 122:73–81

    Article  CAS  PubMed  Google Scholar 

  • Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531

    Article  Google Scholar 

  • Angell DL, Angell WW (1976) Heart valve stent. USA patent 3983581

    Google Scholar 

  • Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    Article  CAS  PubMed  Google Scholar 

  • Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202

    Article  PubMed  Google Scholar 

  • Burke JF, Yannas IV Jr, Quinby WC (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194:413–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartmell JS, Dunn MG (2000) Effect of chemical treatment on tendon cellularity and mechanical properties. J Biomed Mater Res 49:134–140

    Article  CAS  PubMed  Google Scholar 

  • Cebotari S, Tudorache I, Jaekel T, Hilfiker A, Dorfman S, Ternes W (2010) Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs 34(3):206–210

    Article  PubMed  Google Scholar 

  • Chapekar MS (2000) Tissue engineering: challenges and opportunities. J Biomed Mater Res Appl Biomater 53:617–620

    Article  CAS  Google Scholar 

  • Coito AJ, Kupiec-Weglinsky JW (1996) Extracellular matrix protein by standers or active participants in the allograft rejection cascade? Ann Transplant 1:14–18

    CAS  PubMed  Google Scholar 

  • Dahl SL, Koh J, Prabhakar V, Niklason LE (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 12:659–666

    Article  PubMed  Google Scholar 

  • Dewanjee MR (1985) Mayo Foundation, assignee. Treatment of Collagenous Tissue with Glutaraldehyde and Aminodiphosphoate Calcification Inhibitor. USA patent 4553974

    Google Scholar 

  • Dzemeshkevich SL, Konstantinov BA, Gromova GV, Lyudinovskova RA, Kudrina LL (1994) The mitral valve replacement by the new-type bioprostheses (features of design and long-term results). J Cardiovasc Surg 35(6 Suppl 1):189–191

    CAS  Google Scholar 

  • Freytes DO, Badylak SF, Webster TJ, Geddes LA, Rundell AE (2004) Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials 25:2353–2361

    Article  CAS  PubMed  Google Scholar 

  • Gangwar AK, Sharma AK, Kumar N, Kumar N (2003) Surgical management of ventral hernia with glutaraldehyde treated acellular dermal graft in a goat. Vet Pract 4:25–26

    Google Scholar 

  • Gangwar AK, Sharma AK, Kumar N, Maiti SK, Kumar N (2004) Xenogenic acellular dermal graft for the repair of ventral hernia in a non-descript goat. Indian Vet Med J 28:95–96

    Google Scholar 

  • Gilbert TW, Sellaroa TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    CAS  PubMed  Google Scholar 

  • Gilbert TW, Freund J, Badylak SF (2009) Quantification of DNA in biologic scaffold materials. J Surg Res 152(1):135–139

    Article  CAS  PubMed  Google Scholar 

  • Grauss RW, Hazekamp MG, Oppenhuizen F, Van Munsteren CJ, Giltenberger-de Groot AC, De Ruiter MC (2005) Histological evaluation of decellularized porcine aortic valves: matrix changes due to different decellularization methods. Eur J Cardiothorac Surg 27:566–571

    Article  PubMed  Google Scholar 

  • Gulati AK (1988) Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve. J Neurosurg 68(1):117–123

    Article  CAS  PubMed  Google Scholar 

  • Gulati AK, Cole GP (1990) Nerve graft immunogeneicity as a factor determing axonal regeneration in the rat. J Neurosurg 72:114–122

    Article  CAS  PubMed  Google Scholar 

  • Gulati AK, Cole GP (1994) Immunogenicity and regenerative potential of acellular nerve allograft to repair peripheral nerve in rats and rabbits. Acta Neurochir Wein 126:158–164

    Article  CAS  PubMed  Google Scholar 

  • Hardin-Young J, Parenteau NL (2002) Bilayered skin constructs. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic Press, California, pp 1177–1188

    Google Scholar 

  • Hodde M, Hiles A (2002) Virus safety of a porcine-derived medical device: evaluation of a viral inactivation method. Biotechnol Bioeng 79:211–216

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Xu Y, Wu C, Sha D, Fu X (2010) In vitro constitution and in vivo implantation of engineered skin constructs with sweat glands. Biomaterials 31:5520–5525

    Article  CAS  PubMed  Google Scholar 

  • Ikada Y (2006) Challenges in tissue engineering. J Res Soc Interface 3:589–601

    Article  CAS  Google Scholar 

  • Kane JB, Tompkins RG, Yarmush ML, Burk JF (1996) Burn Dressing. In: Ratner BD, Hoffman AS, Schoen FJ, Lemens JE (eds) Biomaterial Science. Academic Press, San Diego, pp 360–370

    Google Scholar 

  • Kim MS, Hong KD, Shin HW, Kim SH, Kim SH, Lee MS, Jang WY, Khang G, Lee HB (2005) Preparation of porcine small intestinal submucosa sponge and their application as a wound dressing in full-thickness skin defect of rat. Int J Biol Macromolles 36:54–60

    Article  CAS  Google Scholar 

  • Klein B, Schiffer R, Hafemann B, Klosterhalfen B, Zwadlo-Klarwasser G (2001) Inflammatory response to a porcine membrane composed of fibrous collagen and elastin as dermal substitute. J Mater Sci Mater Med 12(5):419–424

    Article  CAS  PubMed  Google Scholar 

  • Konstantinovic ML, Lagae P, Zheng F, Verbeken EK, De Ridder D, Deprest JA (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG 112(11):1554–1560

    Article  CAS  PubMed  Google Scholar 

  • Kropp BP, Cheng EY, Lin HK, Zhang Y (2004) Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J Urol Supplement 172(4):1710–1771

    Article  Google Scholar 

  • Kumar N (2016) Development of novel biological soft tissue materials for tissue engineering. In: ISCM-2016, 2nd International conference on soft tissue materials, 12–16, December, 2016, MNIT, Jaipur, Rajasthan, ID 1010, p 14

    Google Scholar 

  • Kumar V, Kumar N, Gangwar AK, Sharma AK, Singh H, Saxena AC, Negi M, Kaarthick DK (2012a) Acellular dermal grafts for the reconstruction of Umbilical/Ventral hernias in buffalo calves. Vet Pract 13(1):90–92

    Google Scholar 

  • Kumar V, Mathew DD, Kumar N, Gangwar AK, Saxena AC, Remya V, Mohsina A (2012) Acellular dermal matrix of rabbit origin for the repair of hernias in dogs. In: XXXVI annual congress of ISVS, Anand, Gujrat, during 1–3 November, 2012, Abstract, pp 99–100

    Google Scholar 

  • Kumar V, Kumar N, Mathew DD, Gangwar AK, Saxena AC, Remya V (2013a) Repair of abdominal wall hernias using acellular dermal matrix in goats. J Appl Anim Res 41(1):117–120. https://doi.org/10.1080/09712119.2012.73822

    Article  CAS  Google Scholar 

  • Kumar V, Gangwar AK, Mathew DD, Ahmed RA, Saxena AC, Kumar N (2013b) Acellular dermal matrix for surgical repair of ventral hernia in horses. J Equine Vet Sci 33(4):238–243. https://doi.org/10.1016/j.jevs.2012.06.017

  • Kumar N, Gangwar AK, Mathew DD, Shrivastava S, Negi M, Singh H, Sharma AK, Maiti SK, Vellachi R, Sonal, Singh MP (2014) Development of collagen based decellularized biomaterials as 3-D scaffold for tissue engineering of skin. Trends Biomater Artif Organs 28(3):83–91

    Google Scholar 

  • Kumar N, Mathew DD, Gangwar AK, Remya V, Mohsina A, Maiti SK, Sharma AK (2014) Reconstruction of large ventro-lateral hernia in a buffalo with acellular dermal matrix: a method for treating large hernias in animals–a case report. Veterinarski Arhiv 84(6):691–99

    Google Scholar 

  • Kumar V, Gangwar AK, Kumar N (2016) Evaluation of the murine dermal matrix as a biological mesh in dogs . Proc Natl Acad Sci, India Sect B Biol Sci 86:953–960. https://doi.org/10.1007/s40011-015-0543-8

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  • Liotta DS, Ferrari HM, Pisanu AJ and Donato FO (1978) Low profile gulteraldehyde-fixed porcine aortic prosthetic device. USA patent 4079468

    Google Scholar 

  • Lockhart LK, Pampolina C, Nickolaychuk BR, McNicol A (2001) Evidence for a role of phospholipase A2 in platelet activation in response to low concentrations of collagen. J Thromb Haemost 85(5):882–889

    Article  CAS  Google Scholar 

  • MacArthur BD, Oreffo RO (2005) Bridging the gap. Nature 433(7021):19

    Article  CAS  PubMed  Google Scholar 

  • Malone JM, Brendel K, Duhamil RC, Reinert RL (1984) Detergent- extracted small diameter vascular prostheses. J Vasc Surg 1:181–191

    Article  CAS  PubMed  Google Scholar 

  • Mathew DD (2014) Development of bioengineered 3-D acellular dermal matrices seeded with mesenchymal stem like cells for dermal wounds in rats, PhD Thesis, Submitted to Deemed University, IVRI, Izatnagar, Uttar Pradesh, India

    Google Scholar 

  • Mathew DD, Kumar N, Sharma AK, Shrivastava S, Gangwar AK, Negi M, Himani Remya V, Karthick DT, Maiti SK, Kurade NP (2012) Collagen based biomaterials as 3-D scaffold for tissue engineering. In: International conference on design of biomaterials, XXIII annual meeting of SBAOI and VI annual general meting of STERMI, 9–11, December, 2012, IISc, Bangalore, Abstract on Page 239

    Google Scholar 

  • Mathew DD, Remya V, Sivanarayanan TB, Sangeetha P, Pawde AM, Mahendran K, Mohsina A, Sharma AK, Kumar N (2013a) Perineal hernioplasty in a Bhotia dog: a case report. In: XXXVII annual congress of ISVS, 6 -8 November 2013, Mannuthy, Thrissur, Kerala, Abstract in Small Animal Surgery (Poster), Page 245–246

    Google Scholar 

  • Mathew DD, Remya V, Madhu DN, Sivanarayanan TB, Kumar N, Sharma AK (2014) Partial abdominal wall agenesis in a calf and its surgical treatment using acellular dermal matrix. In: XXXVIII Annual Congress of ISVS, 15–16 October, 2014, Bikaner, Rajasthan, Abstract in Ruminant Surgery Session-I, p 74

    Google Scholar 

  • Mohsina A, Gangwar AK, Mathew DD, Remya V, Maiti SK, Sharma AK, Kumar N (2013) Umbilical hernioplasty using decellularised rabbit skin in a buffalo calf. In: XXXVII annual congress of ISVS, 6–8 November, 2013, Mannuthy, Thrissur, Kerala, Abstract in Large Animal Surgery (Poster), Page 235

    Google Scholar 

  • Mohsina A, Kumar N, Sharma AK, Mishra B, Mathew DD, Remya V, Shrivastava S, Negi M, Kritaniya D, Tamilmahan P, Maiti SK, Shrivastava S, Singh KP (2015) Bioengineered acellular dermal matrices for the repair of abdominal wall defects in rats. Hernia 19(2):219–229. https://doi.org/10.1007/s10029-014-1308-7

    Article  CAS  PubMed  Google Scholar 

  • Neidert MR, Lee ES, Oegema TR, Tranquillo RT (2002) Enhanced fibrin remodeling in vitro with TGF-beta 1, insulin and plasmin for improved tissue equivalents. Biomaterials 23:3717–3731

    Article  CAS  PubMed  Google Scholar 

  • Nwomeh BC, Liang HX, Cohen IK, Yager DR (1999) MMP-8 is the predominant collagenase in healing wounds and non-healing ulcers. J Surgical Res 81(21):189–195

    Article  CAS  Google Scholar 

  • O’Neill P, Booth AE (1984) Use of porcine dermis as a dural substitute in 72 patients. J Neurosurg 61(2):351–354

    Article  CAS  PubMed  Google Scholar 

  • Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE (2003) Cellular inflammatory response to porcine collagen membranes. J Periodontal Res 38(5):458–464

    Article  CAS  PubMed  Google Scholar 

  • Powell HM, Boyce ST (2006) EDC crosslinking improves skin substitute strength and stability. Biomaterials 27:5821–5827

    Article  CAS  PubMed  Google Scholar 

  • Purohit S, Kumar N, Sharma AK, Dewangan R, Maiti SK (2008) Xenogenic crosslinked acellular dermal graft for repair of perineal hernia in a dog. In: XXXII annual congress of ISVS, Namakkal, Tamil Nadu, 6–8 November, 2008, Abstract 3.27

    Google Scholar 

  • Ratner BD (2006) Biomaterials tutorial: an introduction to biomaterials. University of Washington Engineering Biomaterials. http://www.uweb.engr.washington.edu/research/tutorials/introbiomat.html. Accessed on 5th June 2007

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (1996) Biomaterials science: an introduction to materials in medicine. Academic Press, New York, pp 1–10, 84–94

    Google Scholar 

  • Remya V, Saxena AC, Ninu AR, Kumar R, Mohan D, Kumar N (2014) Hernioplasty for correction of ventral hernia in a dog using acellular dermal matrix. In: XXXVIII annual congress of ISVS, 15–16 October, 2014, Bikaner, Rajasthan, Abstract in Small Animal Surgery Session-II, p 233

    Google Scholar 

  • Ruszczak Z (2003) Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev 55:1595–1611

    Article  CAS  PubMed  Google Scholar 

  • Schechter I (1975) Prolonged retention of glutaraldehyde-treated skin allografts and xenografts: immunological and histological studies. Ann Surg 182(6):699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22):2215–2231

    Article  CAS  PubMed  Google Scholar 

  • Takami Y, Matsuda T, Yoshitake M, Hanumadass M, Walter RJ (1996) Dispase/detergent treated dermal matrix as a dermal substitute. Burns 22:182

    Article  CAS  PubMed  Google Scholar 

  • van der Rest M, Garrone R (1991) Collagen family of proteins. Faseb J 5(13):2814–2823

    Article  PubMed  Google Scholar 

  • Weadock K, Olson RM, Silver FH (1984) Evaluation of collagen crosslinking techniques. Biomater Med Devices Artif Organs 11(4):293–318

    Article  CAS  Google Scholar 

  • Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials 26:7339–734

    Google Scholar 

  • Yannas IV (1996b) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemon JE (eds) Biomaterial Science. Academic Press, San Diego, pp 84–94

    Google Scholar 

  • Yannas IV, Ratner BD, Hoffman AS, Schoen FJ (1996) Natural materials. In. Biomaterials science. Academic Press, San Diego, pp 84–94

    Google Scholar 

  • Yoganathan AP (1995) Cardiac valve prosthesis. In: Bronzino JD (ed) The biomedical engineering hand book. CRC Press, Boca Raton, FL, pp 1847–1870

    Google Scholar 

  • Zhang MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D (2005) Porcine small intestine submucosa (SIS)is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73(1):61–67

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N. et al. (2021). Decellularization of Skin Tissue. In: Kajbafzadeh, AM. (eds) Decellularization Methods of Tissue and Whole Organ in Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1345. Springer, Cham. https://doi.org/10.1007/978-3-030-82735-9_15

Download citation

Publish with us

Policies and ethics