Skip to main content
Log in

Epoxy Nanocomposites with Metal-Containing Fillers: Synthesis, Structure, and Properties

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Recent achievements in the field of the development of preparation methods and study of structure and properties of epoxy nanocomposites with metal-containing fillers are analyzed. The ex situ and in situ methods for preparing epoxy nanocomposites are discussed. Nanocomposites with such fillers as metals, oxides, salts, chalcogenides, quantum dots, and hybrid and multicomponent fillers are considered. The structure of epoxy nanocomposites is analyzed in detail; it is determined by the structure of the matrix, by the type and character of nanoparticle distribution in the volume, and by the thickness and structure of the interfacial layer. The influence of the dimensionality (zero-, one-, two-, or three-dimensional) of metal-containing filler nanoparticles on the structure of the formed epoxy matrix of the nanocomposites is discussed. The dependence of the mechanical properties of epoxy nanocomposites on the interfacial interaction and structure of the matrix is analyzed. The electrophysical, magnetic, thermal, and tribological properties of the epoxy nanocomposites are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Concentrators of stresses are material constituents causing increased stresses in the regions of sharp changes in the material shape and also in zones of contact of material components.

  2. Digestive ripening, also termed size focusing or inverse Ostwald ripening, is the transition of atoms from coarse nanoparticles to finer particles; it is a convenient way to make the size distribution function narrower [33].

REFERENCES

  1. Irzhak, V.I., Epoksidnye polimery i nanokompozity (Epoxy Polymers and Nanocomposites), Chernogolovka: Inst. Problem Khimicheskoi Fiziki Ross. Akad. Nauk, 2021.

    Google Scholar 

  2. Starokadomskii, D., Reshetnik, M., and Matveeva, L., Plast. Massy, 2020, nos. 11–12, pp. 23–27. https://doi.org/10.35164/0554-2901-2020-11-12-23-27

    Article  CAS  Google Scholar 

  3. Irzhak, T.F. and Irzhak, V.I., Polym. Sci., Ser. A, 2017, vol. 59, no. 6, pp. 791–825. https://doi.org/10.7868/S2308112017060049 

    Article  CAS  Google Scholar 

  4. Tee, Z.Y., Yeap, S.P., Hassan, C.S., and Kiew, P.L., Polym.-Plast. Technol. Mater., 2022. https://doi.org/10.1080/25740881.2021.2015778

    Article  Google Scholar 

  5. Uflyand, I.Е., Irzhak, T.F., and Irzhak, V.I., Mater. Manuf. Proc., 2022. https://doi.org/10.1080/10426914.2021.2016820

    Article  Google Scholar 

  6. Uflyand, I.Е. and Irzhak, V.I., J. Polym. Res., 2021, vol. 28, ID 440. https://doi.org/10.1007/s10965-021-02783-9

    Article  CAS  Google Scholar 

  7. Ding, K.H., Wang, G.L., and Zhang, M., J. Appl. Polym. Sci., 2012, vol. 126, no. 2, pp. 734–739. https://doi.org/10.1002/app.36759

    Article  CAS  Google Scholar 

  8. Tao, P., Viswanath, A., Schadler, L.S., Benicewicz, B.C., and Siegel, R.W., ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 9, pp. 3638–3645. https://doi.org/10.1021/am200841n

    Article  CAS  PubMed  Google Scholar 

  9. Tao, P., Li, Y., Siegel, R.W., and Schadler, L.S., J. Appl. Polym. Sci., 2013, vol. 130, no. 5, pp. 3785–3793. https://doi.org/10.1002/app.39652

    Article  CAS  Google Scholar 

  10. Irzhak, V.I., Dzhardimalieva, G.I., and Uflyand, I.E., J. Polym. Res., 2019, vol. 26, ID 220. https://doi.org/10.1007/s10965-019-1896-0

    Article  CAS  Google Scholar 

  11. Kausar, A., Mater. Res. Innov., 2021, vol. 25, no. 3, pp. 175–185. https://doi.org/10.1080/14328917.2020.1748794

    Article  CAS  Google Scholar 

  12. Karak, N., ACS Symp. Ser., 2021, vol. 1385, pp. 299–330. https://doi.org/10.1021/bk-2021-1385.ch010

    Article  CAS  Google Scholar 

  13. Karak, N., ACS Symp. Ser., 2021, vol. 1385, pp. 267–297. https://doi.org/10.1021/bk-2021-1385.ch009

    Article  CAS  Google Scholar 

  14. Rentería, V. and Franco, A., Reviews in Plasmonics, Geddes, C., Ed., Cham: Springer, 2019, vol. 2017, pp. 191–228. https://doi.org/10.1007/978-3-030-18834-4_8

    Article  Google Scholar 

  15. Zhai, W., Wu, Z.-M., Wang, X., Song, P., He, Y., and Wang, R.-M., Prog. Org. Coat., 2015, vol. 87, pp. 122–128. https://doi.org/10.1016/j.porgcoat.2015.05.019

    Article  CAS  Google Scholar 

  16. Dzhardimalieva, G.I., Kydralieva, K.A., Metelitsa, A.V., and Uflyand, I.E., Nanomaterialy. Svoistva i sfery primeneniya (Nanomaterials. Properties and Application Spheres), St. Petersburg: Lan’, 2020, pp. 138–148.

    Google Scholar 

  17. Huang, X., Xie, L., Yang, K., Wu, C., Jiang, P., Li, S., Wu, S., Tatsumi, K., and Tanaka, T., IEEE Trans. Dielectr. Electr. Insul., 2014, vol. 21, no. 2, pp. 467–479. https://doi.org/10.1109/TDEI.2013.004165

    Article  CAS  Google Scholar 

  18. Huang, J., Cao, Y., Zhang, X., Li, Y., Guo, J., Wei, S., Peng, X., Shen, T.D., and Guo, Z., AIP Adv., 2015, vol. 5, no. 9, ID 097183. https://doi.org/10.1063/1.4932381

    Article  CAS  Google Scholar 

  19. Kanapitsas, A., Tsonos, C., Psarras, G.C., and Kripotou, S., eXPRESS Polym. Lett., 2016, vol. 10, no. 3, pp. 227–236. https://doi.org/10.3144/expresspolymlett.2016.21

    Article  CAS  Google Scholar 

  20. Irzhak, T.F. and Irzhak, V.I., Nanotechnology in Aerospace and Structural Mechanics, Ramdani, N., Ed., Hershey, Pennsylvania, USA: IGI Global, 2019, pp. 34–79. https://doi.org/10.4018/978-1-5225-7921-2.ch002

    Article  Google Scholar 

  21. Sangermano, M., Sordo, F., Giovine, M., and Kortaberria, G., Macromol. Mater. Eng., 2013, vol. 298, no. 12, ID 1304. https://doi.org/10.1002/mame.201200444

    Article  CAS  Google Scholar 

  22. Vescovo, L., Sangermano, M., Scarazzin, R., Kortaberria, G., and Mondragen, J., Macromol. Chem. Phys., 2010, vol. 211, no. 17, pp. 1933–1939. https://doi.org/10.1002/macp.201000138

    Article  CAS  Google Scholar 

  23. Kortaberria, G., Arruti, P., Modragon, I., Vescovo, L., and Sangermano, M., J. Appl. Polym. Sci., 2011, vol. 120, no. 4, pp. 2361–2367. https://doi.org/10.1002/app.33440

    Article  CAS  Google Scholar 

  24. Yagci, Y., Sahin, O., Ozturk, T., Marchi, S., Grassini, S., and Sangermano, M., React. Funct. Polym., 2011, vol. 71, no. 8, pp. 857–862. https://doi.org/10.1016/j.reactfunctpolym.2011.05.012

    Article  CAS  Google Scholar 

  25. Yagci, Y., Sangermano, M., and Rizza, G., Polymer, 2008, vol. 49, no. 24, pp. 5195–5198. https://doi.org/10.1016/j.polymer.2008.09.068

    Article  CAS  Google Scholar 

  26. Yagci, Y., Sangermano, M., and Rizza, G., Macromolecules, 2008, vol. 41, no. 20, pp. 7268–7270. https://doi.org/10.1021/ma801776y

    Article  CAS  Google Scholar 

  27. Lu, J., Moon, K.S., and Wong, C.P., J. Mater. Chem., 2008, vol. 18, no. 40, pp. 4821–4826. https://doi.org/10.1039/B807566B

    Article  CAS  Google Scholar 

  28. Gao, H., Liu, L., Luo, Y., and Jia, D., Mater. Lett., 2011, vol. 65, nos. 23–24, pp. 3529–3532. https://doi.org/10.1016/j.matlet.2011.07.086

    Article  CAS  Google Scholar 

  29. Bogdanova, L.M., Shershnev, V.A., Spirin, M.G., Irzhak, V.I., Zakiev, S.E., and Dzhardimalieva, G.I., Russ. J. Phys. Chem., 2019, vol. 93, no. 7, pp. 1317–1321. https://doi.org/10.1134/S0044453719070057 

    Article  CAS  Google Scholar 

  30. Bogdanova, L.M., Kuzub, L.I., Dzhavadyan, E.A., Torbov, V.I., Dremova, N.N., and Pomogailo, A.D., Polym. Sci., Ser. A, 2014, vol. 56, no. 3, pp. 304–310. https://doi.org/10.7868/S2308112014030031 

    Article  CAS  Google Scholar 

  31. Bogdanova, L., Lesnichaya, V., Spirin, M., Shershnev, V., Irzhak, V., Kydralieva, K., Zarrelli, M., and Dzhardimalieva, G., Mater. Today: Proc., 2021, vol. 34, part 1, pp. 156–159. https://doi.org/10.1016/j.matpr.2020.02.138

    Article  CAS  Google Scholar 

  32. Bogdanova, L., Kuzub, L., Dzhavadjan, E., Rabenok, E., Novikov, G., and Pomogailo, A., Macromol. Symp. 2012, vol. 317–318, pp. 117–122. https://doi.org/10.1002/masy.201100099

    Article  CAS  Google Scholar 

  33. Irzhak, T.F. and Irzhak, V.I., Russ. J. Phys. Chem. A, 2020, vol. 94, no. 7, pp. 1439–1442. https://doi.org/10.1134/S0036024420070146 

    Article  CAS  Google Scholar 

  34. Vysotsky, V.V., Uryupina, O.Y., Roldughin, V.I., and Plachev, Yu.A., Colloid, J., 2009, vol. 71, no. 2, pp. 156–162. https://doi.org/10.1134/S1061933X09020021 

    Article  CAS  Google Scholar 

  35. Li, Y.-Q., Yang, Y., and Fu, S.-Y., Compos. Sci. Technol., 2007, vol. 67, nos. 15–16, pp. 3465–3471. https://doi.org/10.1016/j.compscitech.2007.03.010

    Article  CAS  Google Scholar 

  36. Ramezanzadeh, B., Rostami, M., and Niroumandrad, S., Prog. Org. Coat., 2017, vol. 112, pp. 244–253. https://doi.org/10.1016/j.porgcoat.2017.07.005

    Article  CAS  Google Scholar 

  37. Yi, D.K., Mater. Lett., 2016, vol. 182, pp. 85–89. https://doi.org/10.1016/j.matlet.2016.06.092

    Article  CAS  Google Scholar 

  38. Kausar, A., Mater. Res. Innov., 2020, vol. 24, no. 4, pp. 235–243. https://doi.org/10.1080/14328917.2019.1636175

    Article  CAS  Google Scholar 

  39. Eksik, O., Gao, J., Shojaee, S.A., Thomas, A., Chow, P., Bartolucci, S.F., and Koratkar, N., ACS Nano, 2014, vol. 8, no. 5, pp. 5282–5289. https://doi.org/10.1021/nn5014098

    Article  CAS  PubMed  Google Scholar 

  40. Sanctuary, R., Baller, J., Zielinski, B., Becker, N., Krüger, J.K., Philipp, M., and Ziehmer, M., J. Phys. Condens. Matter, 2008, vol. 21, no. 3, ID 035118. https://doi.org/10.1088/0953-8984/21/3/035118

    Article  CAS  PubMed  Google Scholar 

  41. Baller, J., Thomassey, M., Ziehmer, M., and Sanctuary, R., Thermochim. Acta, 2011, vol. 517, nos. 1–2, pp. 34–39. https://doi.org/10.1016/j.tca.2011.01.029

    Article  CAS  Google Scholar 

  42. Karasinski, E.N., Da Luz, M.G., Lepienski, C.M., and Coelho, L.A.F., Thermochim. Acta, 2013, vol. 569, pp. 167–176. https://doi.org/10.1016/j.tca.2013.07.015

    Article  CAS  Google Scholar 

  43. Zabihi, O., Mostafavi, S.M., Ravari, F., Khodabandeh, A., Hooshafza, A., Zare, K., and Shahizadeh, M., Thermochim. Acta, 2011, vol. 521, nos. 1–2, pp. 49–58. https://doi.org/10.1016/j.tca.2011.04.003

    Article  CAS  Google Scholar 

  44. Ghaffari, M., Ehsani, M., Vandalvand, M., Avazverdi, E., Askari, A., and Goudarzi, A., Prog. Org. Coat., 2015, vol. 89, pp. 277–283. https://doi.org/10.1016/j.porgcoat.2015.08.016

    Article  CAS  Google Scholar 

  45. Zabihi, O., Hooshafza, A., Moztarzadeh, F., Payravand, H., Afshar, A., and Alizadeh, R., Thermochim. Acta, 2012, vol. 527, pp. 190–198. https://doi.org/10.1016/j.tca.2011.10.026

    Article  CAS  Google Scholar 

  46. Omrani, A., Rostami, A.A., Ravari, F., and Mashak, A., Thermochim. Acta, 2011, vol. 517, nos. 1–2, pp. 9–15. https://doi.org/10.1016/j.tca.2011.01.024

    Article  CAS  Google Scholar 

  47. Hong, S.G. and Tsai, J.S., J. Therm. Anal. Calorim., 2001, vol. 63, no. 1, pp. 31–46. https://doi.org/10.1023/A:1010119900035

    Article  CAS  Google Scholar 

  48. Jouyandeh, M., Shabanian, M., Khaleghi, M., Paran, S.M.R., Ghiyasi, S., Vahabi, H., and Saeb, M.R., Prog. Org. Coat., 2018, vol. 125, pp. 384–392. https://doi.org/10.1016/j.porgcoat.2018.09.024

    Article  CAS  Google Scholar 

  49. Irzhak, V.I., Polym. Sci., Ser. C, 2020, vol. 62, no. 1, pp. 51–61. https://doi.org/10.1134/S1811238220010038 

    Article  CAS  Google Scholar 

  50. Winey, K.I. and Vaia, R.A., MRS Bull., 2007, vol. 32, no. 4, pp. 314–322. https://doi.org/10.1557/mrs2007.229

    Article  CAS  Google Scholar 

  51. Hull, D. and Clyne, T.W., An Introduction to Composite Materials, Cambridge Solid State Sci. Ser., Cambridge: Univ. Press, 1996, 2nd ed., pp. 133–157.

    Article  Google Scholar 

  52. Zare, Y. and Rhee, K.Y., J. Mater. Sci., 2020, vol. 55, no. 13, pp. 5471–5480. https://doi.org/10.1007/s10853-019-04176-2

    Article  Google Scholar 

  53. Allaoui, A. and El Bounia, N., eXPRESS Polym. Lett., 2009, vol. 3, no. 9, pp. 588–594. https://doi.org/10.3144/expresspolymlett.2009.73

    Article  CAS  Google Scholar 

  54. Chen, F., Clough, A., Reinhard, B.M., Grinstaff, M.W., Jiang, N., Koga, T., and Tsui, O.K.C., Macromolecules, 2013, vol. 46, no. 11, pp. 4663–4669. https://doi.org/10.1021/ma4000368

    Article  CAS  Google Scholar 

  55. Baghdadi, Y.N., Youssef, L., Bouhadir, K., Harb, M., Mustapha, S., Patra, D., annd Tehrani-Bagha, A.R., J. Appl. Polym. Sci., 2021, vol. 138, no. 23, ID 50533. https://doi.org/10.1002/app.50533

    Article  CAS  Google Scholar 

  56. Balguri, P.K., Harris Samuel, D.G., Indira, C., Penki, T.R., and Thumu, U., Polym.-Plast. Technol. Mater., 2022. https://doi.org/10.1080/25740881.2021.1991953

    Article  Google Scholar 

  57. Demir, B., Chan, K.-Y., Yang, D., Mouritz, A., Lin, H., Jia, B., Lau, K.-T., and Walsh, T.R., Compos. Sci. Technol., 2019, vol. 174, pp. 106–116. https://doi.org/10.1016/j.compscitech.2019.02.020

    Article  CAS  Google Scholar 

  58. El-Masry, M.M., Ramadan, R., and Ahmed, M.K., Results Mater., 2020, vol. 8, ID 100160. https://doi.org/10.1016/j.rinma.2020.100160

    Article  Google Scholar 

  59. Goyat, M.S., Hooda, A., Gupta, T.K., Kumar, K., Halder, S., Ghosh, P.K., and Dehiya, B.S., Ceram. Int., 2021, vol. 47, no. 16, pp. 22316–22344. https://doi.org/10.1016/j.ceramint.2021.05.083

    Article  CAS  Google Scholar 

  60. Hoseini, M., Dini, G., and Bahadori, M., J. Compos. Mater., 2020, vol. 54, no. 17, pp. 2231–2243. https://doi.org/10.1177/0021998319891202

    Article  CAS  Google Scholar 

  61. Mahmud, A., Dev, C., Meem, M.T., Gafur, M.A., and Hoque, M.A., Green Mater., 2021. https://doi.org/10.1680/jgrma.21.00020

    Article  Google Scholar 

  62. Pinto, D., Bernardo, L., Amaro, A., and Lopes, S., Constr. Build. Mater., 2015, vol. 95, pp. 506–524. https://doi.org/10.1016/j.conbuildmat.2015.07.124

    Article  Google Scholar 

  63. Tang, Y., Su, K., Man, R., Hillman, M.C., and Du, J., JOM, 2021, vol. 73, no. 8, pp. 2452–2459. https://doi.org/10.1007/s11837-021-04714-x

    Article  Google Scholar 

  64. Thipperudrappa, S., Hiremath, A., and Kurki Nagaraj, B., Polym. Compos., 2021, vol. 42, no. 9, pp. 4831–4844. https://doi.org/10.1002/pc.26193

    Article  CAS  Google Scholar 

  65. Wetzel, B., Rosso, P., Haupert, F., and Friedrich, K., Eng. Fract. Mech., 2006, vol. 73, no. 16, pp. 2375–2398. https://doi.org/10.1016/j.engfracmech.2006.05.018

    Article  Google Scholar 

  66. Javidparvar, A.A., Ramezanzadeh, B., and Ghasemi, E., Prog. Org. Coat., 2016, vol. 90, pp. 10–20. https://doi.org/10.1016/j.porgcoat.2015.09.018

    Article  CAS  Google Scholar 

  67. Sun, T., Fan, H., Wang, Z., Liu, X., and Wu, Z., Mater. Des., 2015, vol. 87, pp. 10–16. https://doi.org/10.1016/j.matdes.2015.07.177

    Article  CAS  Google Scholar 

  68. Sun, D., Sue, H.-J., and Miyatake, N., J. Phys. Chem. C, 2008, vol. 112, no. 41, pp. 16002–16010. https://doi.org/10.1021/jp805104h

    Article  CAS  Google Scholar 

  69. Zou, W., Du, Z., Li, H., and Zhang, C., Polymer, 2011, vol. 52, no. 9, pp. 1938–1943. https://doi.org/10.1016/j.polymer.2011.02.043

    Article  CAS  Google Scholar 

  70. Martinez-Garcia, J.C., Serraïma-Ferrer, A., Lopeandía-Fernández, A., Lattuada, M., Sapkota, J., and Rodríguez-Viejo, J., Nanomaterials, 2021, vol. 11, no. 4, ID 830. https://doi.org/10.3390/nano11040830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martinez-Garcia, J.C., Rzoska, S.J., Drozd-Rzoska, A., Starzonek, S., and Mauro, J.C., Sci. Rep., 2015, vol. 5, ID 8314. https://doi.org/10.1038/srep08314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mathioudakis, G.N., Patsidis, A.C., and Psarras, G.C., J. Therm. Anal. Calorim., 2014, vol. 116, no. 1, pp. 27–33. https://doi.org/10.1007/s10973-013-3510-8

    Article  CAS  Google Scholar 

  73. Eker, Y.R., Özcan, M., Özkan, A.O., and Kırkıcı, H., Macromol. Mater. Eng., 2019, vol. 304, no. 7, ID 1800670. https://doi.org/10.1002/mame.201800670

    Article  CAS  Google Scholar 

  74. Wang, Q. and Chen, G., IEEE Trans. Dielectr. Electr. Insul., 2014, vol. 21, no. 4, pp. 1809–1816. https://doi.org/10.1109/TDEI.2014.004278

    Article  CAS  Google Scholar 

  75. Patsidis, A. and Psarras, G.C., eXPRESS Polym. Lett., 2008, vol. 2, no. 10, pp. 718–726. https://doi.org/10.3144/expresspolymlett.2008.85

    Article  CAS  Google Scholar 

  76. Singha, S. and Thomas, M.J., IEEE Trans. Dielectr. Electr. Insul., 2009, vol. 16, no. 2, pp. 531–542. https://doi.org/10.1109/TDEI.2009.4815189

    Article  CAS  Google Scholar 

  77. Gonon, p. and Boudefel, A., J. Appl. Phys., 2006, vol. 99, no. 2, ID 024308. https://doi.org/10.1063/1.2163978

    Article  CAS  Google Scholar 

  78. Irzhak, V.I., Colloid, J., 2021, vol. 83, no. 1, pp. 64–69. https://doi.org/10.1134/S1061933X21010063 

    Article  CAS  Google Scholar 

  79. Chiteme, C. and McLachlan, D.S., Phys. Rev. B, 2003, vol. 67, no. 2, ID 024206. https://doi.org/10.1103/PhysRevB.67.024206

    Article  CAS  Google Scholar 

  80. Rao, C.P., Periyapatna, R., and Haradanahalli, M., J. Vinyl Addit. Technol., 2021, vol. 27, no. 4, pp. 711–721. https://doi.org/10.1002/vnl.21844

    Article  CAS  Google Scholar 

  81. Nam, S., Cho, H.W., Kim, T., Kim, D., Sung, B.J., Lim, S., and Kim, H., Appl. Phys. Lett., 2011, vol. 99, no. 4, ID 043104. https://doi.org/10.1063/1.3615690

    Article  CAS  Google Scholar 

  82. Novikov, G.F., Rabenok, E.V., Bogdanova, L.M., and Irzhak, V.I., Polym. Sci., Ser. A, 2017, vol. 59, no. 5, pp. 741–750. https://doi.org/10.7868/S2308112017050145 

    Article  CAS  Google Scholar 

  83. Li, L. and Zheng, S., Ind. Eng. Chem. Res., 2015, vol. 54, no. 1, pp. 171–180. https://doi.org/10.1021/ie5038193

    Article  CAS  Google Scholar 

  84. Gu, H., Tadakamalla, S., Huang, Y., Colorado, H.A., Luo, Z., Haldolaarachchige, N., Young, D.P., Wei, S., and Guo, Z., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 10, pp. 5613–5624. https://doi.org/10.1021/am301529t

    Article  CAS  PubMed  Google Scholar 

  85. O’Neal, K.R., Brinzari, T.V., Wright, J.B., Ma, C., Giri, S., Schlueter, J.A., Wang, Q., Jena, P., Liu, Z., and Musfeldt, J.L., Sci. Rep., 2014, vol. 4, ID 6054. https://doi.org/10.1038/srep06054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, X., Alloul, O., He, Q., Zhu, J., Verde, M.J., Li, Y., Wei, S., and Guo, Z., Polymer, 2013, vol. 54, no. 14, pp. 3594–3604. https://doi.org/10.1016/j.polymer.2013.04.062

    Article  CAS  Google Scholar 

  87. Wei, S., Wang, Q., Zhu, J., Sun, L., Lin, H., and Guo, Z., Nanoscale, 2011, vol. 3, no. 11, pp. 4474–4502. https://doi.org/10.1039/C1NR11000D

    Article  CAS  PubMed  Google Scholar 

  88. Zhu, J., Wei, S., Ryu, J., Sun, L., Luo, Z., and Guo, Z., ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 7, pp. 2100–2107. https://doi.org/10.1021/am100361h

    Article  CAS  Google Scholar 

  89. Cho, H.W., Nam, S., Lim, S., Kim, D., Kim, H., and Sung, B.J., J. Appl. Phys., 2014, vol. 115, no. 15, ID 154307. https://doi.org/10.1063/1.4871669

    Article  CAS  Google Scholar 

  90. Thieu, N.A.T., Vu, M.C., Kim, D.H., Choi, W.K., and Kim, S.-R., Polym. Adv. Technol., 2020, vol. 31, no. 10, pp. 2351–2359. https://doi.org/10.1002/pat.4954

    Article  CAS  Google Scholar 

  91. Pashayi, K., Fard, H.R., Lai, F., Iruvanti, S., Plawsky, J., and Borca-Tasciuc, T., J. Appl. Phys., 2012, vol. 111, no. 10, ID 104310. https://doi.org/10.1063/1.4716179

    Article  CAS  Google Scholar 

  92. Liu, D., Zhao, W., Liu, S., Cen, Q., and Xue, Q., Surf. Topogr. Metrol. Prop., 2017, vol. 5, no. 2, ID 024003. https://doi.org/10.1088/2051-672X/aa72b4

    Article  Google Scholar 

  93. Tian, J., Li, C., and Xian, G., Polym. Compos., 2021, vol. 42, no. 4, pp. 2061–2072. https://doi.org/10.1002/pc.25959

    Article  CAS  Google Scholar 

  94. Yang, J., Xu, Y., Su, C., Nie, S., and Li, Z., Front. Chem. Sci. Eng., 2021, vol. 15, no. 5, pp. 1281–1295. https://doi.org/10.1007/s11705-020-2007-9

    Article  CAS  Google Scholar 

  95. Yang, W., Feng, W., Liao, Z., Yang, Y., Miao, G., Yu, B., and Pei, X., Surf. Coat. Technol., 2021, vol. 406, ID 126639. https://doi.org/10.1016/j.surfcoat.2020.126639

    Article  CAS  Google Scholar 

  96. Dass, K., Chauhan, S.R., and Gaur, B., Part. Sci. Technol., 2017, vol. 35, no. 5, pp. 589–606. https://doi.org/10.1080/02726351.2016.1184730

    Article  CAS  Google Scholar 

  97. Yazman, Ş., Uyaner, M., Karabörk, F., and Akdemir, A., J. Compos. Mater., 2021, vol. 55, no. 28, pp. 4257–4272. https://doi.org/10.1177/00219983211037059

    Article  CAS  Google Scholar 

  98. Che, Y., Sun, Z., Zhan, R., Wang, S., Zhou, S., and Huang, J., Ceram. Int., 2018, vol. 44, no. 15, pp. 18067–18077. https://doi.org/10.1016/j.ceramint.2018.07.010

    Article  CAS  Google Scholar 

  99. Chen, B., Li, X., Jia, Y., Xu, L., Liang, H., Li, X., and Yan, F., Compos. A, 2018, vol. 115, pp. 157–165. https://doi.org/10.1016/j.compositesa.2018.09.021

    Article  CAS  Google Scholar 

  100. Fouly, A. and Alkalla, M., Tribol. Int., 2020, vol. 152, ID 106550. https://doi.org/10.1016/j.triboint.2020.106550

    Article  CAS  Google Scholar 

  101. Zheng, Y.-P., Zhang, J.-X., Li, Q., Chen, W., and Zhang, X., Polym.-Plast. Technol. Eng., 2009, vol. 48, no. 4, pp. 384–388. https://doi.org/10.1080/03602550902725381

    Article  CAS  Google Scholar 

  102. Srivastava, S. and Tiwari, R.K., Int. J. Polym. Mater., 2012, vol. 61, no. 13, pp. 999–1010. https://doi.org/10.1080/00914037.2011.617326

    Article  CAS  Google Scholar 

  103. Kishi, H., Tanaka, S., Nakashima, Y., and Saruwatari, T., Polymer, 2016, vol. 82, pp. 93–99. https://doi.org/10.1016/j.polymer.2015.11.043

    Article  CAS  Google Scholar 

  104. Kuzub, L.I., Gurieva, L.L., Khodos, I.I., and Badamshina, E.R., Polym. Sci., Ser. B, 2020, vol. 62, no. 3, pp. 299–305. https://doi.org/10.1134/S1560090420030094 

    Article  CAS  Google Scholar 

  105. Novikov, G.F., Rabenok, E.V., Bogdanova, L.M., and Irzhak, V.I., Russ. J. Phys. Chem., 2017, vol. 91, no. 10, pp. 1971–1975. https://doi.org/10.7868/S0044453717100302 

    Article  CAS  Google Scholar 

  106. Ali, F., Waseem, M., Khurshid, R., and Afzal, A., Prog. Org. Coat., 2020, vol. 146, ID 105726. https://doi.org/10.1016/j.porgcoat.2020.105726

    Article  CAS  Google Scholar 

  107. Ghosal, A. and Ahmad, S., New J. Chem., 2017, vol. 41, no. 11, pp. 4599–4610. https://doi.org/10.1039/C6NJ03906E

    Article  CAS  Google Scholar 

  108. Goyat, M.S., Rana, S., Halder, S., and Ghosh, P.K., Ultrason. Sonochem., 2018, vol. 40, part A, pp. 861–873. https://doi.org/10.1016/j.ultsonch.2017.07.040

    Article  CAS  PubMed  Google Scholar 

  109. Guo, S.-Y., Zhang, X., Ren, J., Chen, J.-Z., Zhao, T.-J., Li, T.-W., and Zhang, L., Constr. Build. Mater., 2021, vol. 272, ID 121960. https://doi.org/10.1016/j.conbuildmat.2020.121960

    Article  CAS  Google Scholar 

  110. Krzywiński, K., Sieradzki, A., Sadowski, Ł., Królicka, A., and Chastre, C., Compos. Struct., 2022, vol. 282, ID 115127. https://doi.org/10.1016/j.compstruct.2021.115127

    Article  CAS  Google Scholar 

  111. Malekshahinezhad, K., Ahmadi-khaneghah, A., and Behniafar, H., Macromol. Res., 2020, vol. 28, no. 6, pp. 567–572. https://doi.org/10.1007/s13233-020-8067-3

    Article  CAS  Google Scholar 

  112. Zaer-Miri, S. and Khosravi, H., J. Ind. Text., 2019. https://doi.org/10.1177/1528083719893718

    Article  Google Scholar 

  113. Kavitha, D., Sindhu, T.K., and Nambiar, T.N.P., IET Sci. Meas. Technol., 2017, vol. 11, no. 2, pp. 179–185. https://doi.org/10.1080/10.1049/iet-smt.2016.0226

    Article  Google Scholar 

  114. Ge, G., Tang, Y., Li, Y., and Huang, L., Appl. Sci., 2020, vol. 10, no. 20, ID 7018. https://doi.org/10.3390/app10207018

    Article  CAS  Google Scholar 

  115. Guvvala, N., Rao, B.N., and Sarathi, R., Micro Nano Lett., 2019, vol. 14, no. 13, pp. 1334–1339. https://doi.org/10.1049/mnl.2019.0247

    Article  CAS  Google Scholar 

  116. Ramezanzadeh, B., Attar, M.M., and Farzam, M., J. Therm. Anal. Calorim., 2010, vol. 103, no. 2, pp. 731–739. https://doi.org/10.1007/s10973-010-0996-1

    Article  CAS  Google Scholar 

  117. Liang, C., Song, P., Gu, H., Ma, C., Guo, Y., Zhang, H., Xu, X., Zhang, Q., and Gu, J., Compos. Part A: Appl. Sci. Manuf., 2017, vol. 102, pp. 126–136. https://doi.org/10.1016/j.compositesa.2017.07.030

    Article  CAS  Google Scholar 

  118. Sari, M.G., Saeb, M.R., Shabanian, M., Khaleghi, M., Vahabi, H., Vagner, C., Zarrintaj, P., Khalili, R., Paran, S.M.R., Ramezanzadeh, B., and Mozafari, M., Prog. Org. Coat., 2018, vol. 115, pp. 143–150. https://doi.org/10.1016/j.porgcoat.2017.11.016

    Article  CAS  Google Scholar 

  119. Suresh, S., Nisha, P., Saravanan, P., Jayamoorthy, K., and Karthikeyan, S., Silicon, 2018, vol. 10, pp. 1291–1303. https://doi.org/10.1007/s12633-017-9604-3

    Article  CAS  Google Scholar 

  120. Khan, M.Z., Waleed, A., Khan, A., Hassan, M.A.S., Paracha, Z.J., and Farooq, U., J. Electron. Mater., 2020, vol. 49, no. 5, pp. 3400–3408. https://doi.org/10.1007/s11664-020-08001-4

    Article  CAS  Google Scholar 

  121. Huang, L., Lv, X., Tang, Y., Ge, G., Zhang, P., and Li, Y., Polymers, 2020, vol. 12, no. 9, ID 2126. https://doi.org/10.3390/polym12092126

    Article  CAS  PubMed Central  Google Scholar 

  122. Lee, W., Wie, J., and Kim, J., Ceram. Int., 2021, vol. 47, no. 13, pp. 18662–18668. https://doi.org/10.1016/j.ceramint.2021.03.198

    Article  CAS  Google Scholar 

  123. Wang, Z., Cheng, Y., Wang, H., Yang, M., Shao, Y., Chen, X., and Tanaka, T., J. Mater. Sci., 2017, vol. 52, pp. 4299–4308. https://doi.org/10.1007/s10853-016-0511-6

    Article  CAS  Google Scholar 

  124. Yu, J., Huo, R., Wu, C., Wu, X., Wang, G., and Jiang, P., Macromol. Res., 2012, vol. 20, no. 8, pp. 816–826. https://doi.org/10.1007/s13233-012-0122-2

    Article  CAS  Google Scholar 

  125. Nisha, P., Dhanalekshmi, K.I., and Ravichandran, C., Silicon, 2020, vol. 13, pp. 1009–1015. https://doi.org/10.1007/s12633-020-00471-9

    Article  CAS  Google Scholar 

  126. Pandey, J.C. and Singh, M., Polym. Test., 2020, ID 106802. https://doi.org/10.1016/j.polymertesting.2020.106802

    Article  CAS  Google Scholar 

  127. Permal, A., Devarajan, M., Hung, H.L., Zahner, T., Lacey, D., and Ibrahim, K., J. Mater. Eng. Perform., 2018, vol. 27, pp. 1296–1307. https://doi.org/10.1007/s11665-018-3151-y

    Article  CAS  Google Scholar 

  128. Gnanavel, M. and Maridurai, T., Dig. J. Nanomater. Biostruct., 2018, vol. 13, no. 1, pp. 39–48.

    Google Scholar 

  129. Saeb, M.R., Rastin, H., Shabanian, M., Ghaffari, M., and Bahlakeh, G., Prog. Org. Coat., 2017, vol. 110, pp. 172–181. https://doi.org/10.1016/j.porgcoat.2017.05.007

    Article  CAS  Google Scholar 

  130. Abosheiasha, H.F., Mansour, D.-E.A., Darwish, M.A., and Assar, S.T., J. Mater. Res. Technol., 2022, vol. 16, pp. 1526–1546. https://doi.org/10.1016/j.jmrt.2021.11.149

    Article  CAS  Google Scholar 

  131. Aghamohammadi, H., Heidarpour, A., Jamshidi, R., and Bayat, O., Ceram. Int., 2019, vol. 45, no. 7, part A, pp. 9106–9113. https://doi.org/10.1016/j.ceramint.2019.01.249

    Article  CAS  Google Scholar 

  132. Kaadhm, E.Q., Salman, K.D., and Reja, A.H., J. Phys.: Conf. Ser., 2021, vol. 1973, no. 1, ID 012052. https://doi.org/10.1088/1742-6596/1973/1/012052

    Article  CAS  Google Scholar 

  133. Kumar, R. and Nayak, S.K., J. Mater. Sci.: Mater. Electron., 2020, vol. 31, no. 18, pp. 16008–16019. https://doi.org/10.1007/s10854-020-04163-3

    Article  CAS  Google Scholar 

  134. Mathews, J.M., Santhosh, B., Vaisakh, S.S., and Ananthakumar, S., Mater. Today: Proc., 2020, vol. 25, pp. 155–162. https://doi.org/10.1016/j.matpr.2019.12.249

    Article  CAS  Google Scholar 

  135. Paul, S. and Sindhu, T.K., IEEE Trans. Compon. Packaging Manuf. Technol., 2015, vol. 5, no. 8, pp. 1122–1128. https://doi.org/10.1109/TCPMT.2015.2451078

    Article  CAS  Google Scholar 

  136. Wang, Y., Zhu, L., Zhou, J., Jia, B., Jiang, Y., Wang, J., Wang, M., Cheng, Y., and Wu, K., Polym. Bull., 2019, vol. 76, no. 8, pp. 3957–3970. https://doi.org/10.1007/s00289-018-2581-x

    Article  CAS  Google Scholar 

  137. Yamunadevi, V., Palaniradja, K., Thiagarajan, A., Ganeshan, P., and Raja, K., Mater. Res. Express, 2019, vol. 6, no. 9, ID 095057. https://doi.org/10.1088/2053-1591/ab2f64

    Article  CAS  Google Scholar 

  138. Zhang, Y., He, X., Cao, M., Shen, X., Yang, Y., Yi, J., Guan, J., Shen, J., Xi, M., Zhang, Y., and Tang, B., Materials, 2021, vol. 14, no. 10, ID 2509. https://doi.org/10.3390/ma14102509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tsikriteas, Z.M., Manika, G.C., Patsidis, A.C., and Psarras, G.C., J. Therm. Anal. Calorim., 2020, vol. 142, no. 1, pp. 231–243. https://doi.org/10.1007/s10973-020-09855-w

    Article  CAS  Google Scholar 

  140. Zou, W., Du, Z., Li, H., and Zhang, C., J. Mater. Chem., 2011, vol. 21, no. 35, p. 13276. https://doi.org/10.1039/c1jm11125f

    Article  CAS  Google Scholar 

  141. Zhan, Y., Wang, Y., Wang, M., Ding, X., and Wang, X., Adv. Mater. Interfaces, 2020, vol. 7, no. 2, ID 1901490. https://doi.org/10.1002/admi.201901490

    Article  CAS  Google Scholar 

  142. Kim, J.S., Yoon, K.H., Lee, Y.S., and Han, J.H., Macromol. Res., 2021, vol. 29, no. 3, pp. 252–256. https://doi.org/10.1007/s13233-021-9032-5

    Article  CAS  Google Scholar 

  143. Hawkins, S.A., Yao, H., Wang, H., and Sue, H.-J., Carbon, 2017, vol. 115, pp. 18–27. https://doi.org/10.1016/j.carbon.2016.12.058

    Article  CAS  Google Scholar 

  144. Hussein, M.A., El-Said, W.A., Abu-Zied, B.M., and Choi, J.-W., Nano Converg., 2020, vol. 7, no. 1, ID 15. https://doi.org/10.1186/s40580-020-00225-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sarafrazi, M., Ghasemi, A.R., and Hamadanian, M., Fibers Polym., 2021, vol. 22, pp. 2306–2315. https://doi.org/10.1007/s12221-021-0720-8

    Article  CAS  Google Scholar 

  146. Satheesan, B. and Mohammed, A.S., Wear, 2021, vols. 466–467, ID 203560. https://doi.org/10.1016/j.wear.2020.203560

    Article  CAS  Google Scholar 

  147. Wu, Y., Zhang, X., Negi, A., He, J., Hu, G., Tian, S., and Liu, J., Polymers, 2020, vol. 12, no. 2, ID 426. https://doi.org/10.3390/polym12020426

    Article  CAS  PubMed Central  Google Scholar 

  148. Zhang, X., Alloul, O., Zhu, J., He, Q., Luo, Z., Colorado, H.A., Haldolaarachchige, N., Young, D.P., Shen, T., and Wei, S., RSC Adv., 2013, vol. 3, no. 24, pp. 9453–9464. https://doi.org/10.1039/C3RA41233D

    Article  CAS  Google Scholar 

  149. Zhao, M., Liu, L., Zhang, B., Sun, M., Zhang, X., Zhang, X., Li, J., and Wang, L., RSC Adv., 2018, vol. 8, no. 61, pp. 35170–35178. https://doi.org/10.1039/C8RA07448H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Riaz, S. and Park, S.-J., Compos. Part A: Appl. Sci. Manuf., 2021, vol. 146, ID 106419. https://doi.org/10.1016/j.compositesa.2021.106419

    Article  CAS  Google Scholar 

  151. Batsouli, D.I., Patsidis, A.C., and Psarras, G.C., Electronics, 2021, vol. 10, no. 22, ID 2803. https://doi.org/10.3390/electronics10222803

    Article  CAS  Google Scholar 

  152. Yang, W., Yu, S., Luo, S., Sun, R., Liao, W.-H., and Wong, C.-P., J. Alloys Compd., 2015, vol. 620, pp. 315–323. https://doi.org/10.1016/j.jallcom.2014.09.142

    Article  CAS  Google Scholar 

  153. Koufakis, E., Mathioudakis, G.N., Patsidis, A.C., and Psarras, G.C., Polym. Test., 2019, vol. 77, ID 105870. https://doi.org/10.1016/j.polymertesting.2019.04.017

    Article  CAS  Google Scholar 

  154. Sanida, A., Stavropoulos, S.G., Speliotis, Th., and Psarras, G.C., J. Therm. Anal. Calorim., 2020, vol. 142, no. 5, pp. 1701–1708. https://doi.org/10.1007/s10973-020-10247-3

    Article  CAS  Google Scholar 

  155. Vryonis, O., Anastassopoulos, D.L., Vradis, A.A., and Psarras, G.C., Polymer, 2016, vol. 95, pp. 82–90.

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Institute of Problems of Chemical Physics, Russian Academy of Sciences (theme registry no. АААА-А19119032690060-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Uflyand.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 138–163, February, 2022 https://doi.org/10.31857/S0044461822020013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irzhak, V.I., Uflyand, I.E. Epoxy Nanocomposites with Metal-Containing Fillers: Synthesis, Structure, and Properties. Russ J Appl Chem 95, 167–190 (2022). https://doi.org/10.1134/S1070427222020021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222020021

Keywords:

Navigation