Skip to main content
Log in

Investigation of the Thermal and Dielectric Behavior of Epoxy Nano-Hybrids by using Silane Modified Nano-ZnO

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present work focuses on a comparative study of the thermal and electrical behavior of diglycidyl ethers of bisphenol-A (DGEBA) to uncover the suitability for its use in high performance applications. An epoxy nanohybrids coating was developed using aminosilane functionalized ZnO (1, 3, 5 and 7 wt%) as the dispersed phase and commercially available DGEBA as the matrix phase, with curing using triethylenetetramine (TETA). The structural features of these materials were ascertained by FTIR spectral studies, SEM and AFM analyses. The peak shift in all the samples at ∼ 1032 cm−1 explains the etheric linkage of ZnO-APTES core shell nanoparticles with the DGEBA virgin epoxy resin. The thermal behavior of the diglycidyl resins and their corresponding nano-hybrids was studied by TGA and DSC. The first decomposition stage of DGEBA neat epoxy resin starts at 325 °C and the second stage at 513.2 °C which varied in all epoxy nanocomposites. Further thermodynamic parameters are calculated using the Coats-Redfern method from TGA results to examine the thermal stability. The sample with 3% ZnO-APTES-DGEBA film exhibits the highest activation energy of 26.20 kj/mol. The dielectric permittivity, dielectric loss and AC conductivity variation with frequency, temperature and filler concentration were studied using an impedance analyzer. The variation in electrical behavior is more pronounced in 1 and 7% ZnO-APTES-DGEBA epoxy nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Benzimidazole: Dramatic luminescence turn-on by ZnO nanocrystals. Measurement 46:3883–3886

    Article  Google Scholar 

  2. Li J, Li L, Xiang Y, Zheng S (2016) Nanostructured Epoxy Thermosets Containing Poly(vinylidene fluoride): Preparation, Morphologies, and Dielectric Properties. Ind Eng Chem Res 55:586–596

    Article  CAS  Google Scholar 

  3. Jlassi K, Chandran S, Poothanari MA, Zayani MB, Thomas S, Chehimi MM Clay/polyaniline hybrid through diazonium chemistry: conductive nanofiller with unusual effects on interfacial properties of epoxy nanocomposites. Langmuir. https://doi.org/10.1021/acs.langmuir.5b04457

  4. Xiong J, Liu Y, Yang X, Wang X (2004) Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym Degr Stab 86:549–555

    Article  CAS  Google Scholar 

  5. Duraibabu D, Alagar M, Ananda Kumar S (2014) Studies on mechanical, thermal and dynamic mechanical properties of functionalized nanoalumina reinforced sulphone ether linked tetraglycidyl epoxy nanocomposites. RSC Adv 4:40132–40140

    Article  CAS  Google Scholar 

  6. Kornmann X, Thomann R, Mulhaupt R, Finter J, Berglund LA (2002) High performance epoxy-layered silicate nanocomposites. Polym Eng Sci 42:1815–1826

    Article  CAS  Google Scholar 

  7. Kinloch AJ, Shaw SJ, Hunston DL (1983) Microstructure and fracture studies. Polymer 32:1341–1354

    Article  Google Scholar 

  8. Meenakshi KS, Jaya Sudhan EP (2011) Development and study of the thermal and electrical behaviour of TGDDS epoxy nanocomposites for high-performance applications. Appl Nanosci 1:109–115

    Article  CAS  Google Scholar 

  9. Clayton A (1988) Epoxy resins: chemistry and technology. Marcel Decker, New York

    Google Scholar 

  10. Guenthner AJ, Yandek GR, Wright ME, Petteys BJ, Quintana R, Connor D, Gilardi RD, Marchant D (2006) A new silicon-containing Bis(cyanate) ester resin with improved thermal oxidation and moisture resistance. Macromolecules 39:6046–6053

    Article  CAS  Google Scholar 

  11. Saravanan P, Jayamoorthy K, Ananda Kumar S (2015) Switch-On fluorescence and photo-induced electron transfer of 3-aminopropyltriethoxysilane to ZnO: Dual applications in sensors and antibacterial activity. Sensors Actuators B: Chem 221:784–791

    Article  CAS  Google Scholar 

  12. Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors. https://doi.org/10.3390/s100100684

  13. Suresh S, Saravanan P, Jayamoorthy K, Ananda Kumar S, Karthikeyan S (2016) Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater Sci Eng C 64:286–292

    Article  CAS  Google Scholar 

  14. Olad A, Nosrati R (2012) Preparation, Characterization, and photocatalytic activity of polyaniline/ZnO nanocomposite. Res Chem Intermed 38:323–336

    Article  CAS  Google Scholar 

  15. Sharma P, Choudhary V, Narula AK (2008) Curing and thermal behavior of epoxy resin in the presence of a mixture of imideamines. J Therm Anal Calorim 94:805–815

    Article  CAS  Google Scholar 

  16. Leszczynska A, Pielichowski K (2008) Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim 933:677–687

    Article  Google Scholar 

  17. Liška M, Antalík J (2004) Enthalpy relaxation in glasses: regression analysis of integral DSC data. J Therm Anal Calorim 67 :213–222

    Article  Google Scholar 

  18. Starr W, Schrøder T, Glotzer S (2001) Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films. Phys Rev E 64:1802–1805

    Article  CAS  Google Scholar 

  19. Ash B, Schadle L, Siegel R (2002) Glass transition behavior of Alumina/polymethyl methacrylate nanocomposites. Mater Lett 55:83–87

    Article  CAS  Google Scholar 

  20. Nelson JK, Fothergill JC (2004) Internal charge behaviour of nanocomposites. Nanotechnology 15:586–595

    Article  CAS  Google Scholar 

  21. Sasidhar S, Schuman TP, Dogan F (2013) Dielectric Properties of polymer −particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Interfaces 5:1917–1927

    Article  CAS  Google Scholar 

  22. Lewis TJ (2006) Nano-composite dielectrics: The dielectric nature of the nano-particle environment. IEEJ Trans Fundam Mater 126:1020–1030

    Article  Google Scholar 

  23. Plesa I, Ciuprina F, Notingher PV (2010) Dielectric spectroscopy of epoxy resin with and without inorganic nanofillers. J Adv Res Phys 1:011011

    Google Scholar 

  24. Huang X, Zheng Y, Jiang P, Yin Y (2010) Influence of nanoparticle surface treatment on the electrical properties of cycloaliphatic epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 17:635–643

    Article  CAS  Google Scholar 

  25. Roy M, Nelson JK, MacCrone RK, Schandler LS, Reed CW, Keefe R, Zenger W (2005) Polymer nanocomposites dielectrics – the role of the interface. IEEE Trans Diel and Electr Insul 12:629–643

    Article  CAS  Google Scholar 

  26. Tanaka T, Montanari GC, Mülhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans Diel and Electr Insul 11:763–784

    Article  CAS  Google Scholar 

  27. Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 15:12–23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 190 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Nisha, P., Saravanan, P. et al. Investigation of the Thermal and Dielectric Behavior of Epoxy Nano-Hybrids by using Silane Modified Nano-ZnO. Silicon 10, 1291–1303 (2018). https://doi.org/10.1007/s12633-017-9604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9604-3

Keywords

Navigation