Skip to main content
Log in

Structure and properties of epoxy polymer nanocomposites reinforced with carbon nanotubes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A detailed analysis of nanocomposites based on epoxy polymers and various nanofillers, including one-, two- and three-dimensional carbon nanotubes, was carried out. Special attention is paid to the structure of epoxy nanocomposites and the interfacial layer in these systems. The data on the mechanical, electrophysical, magnetic, thermal, and tribological properties of epoxy nanocomposites are summarized. The influence of the nature of nanofillers (carbon nanotubes, metals, and minerals) on the properties of nanocomposites is analyzed. The problems and prospects of development of nanocomposites based on epoxy polymers reinforced with carbon nanotubes are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

BADGE :

Diglycidyl ether of bisphenol A

CNT :

Carbon nanotube

COF :

Coefficient of friction

3DG :

Three-dimensional graphene product

GO :

Graphene oxide

MMT :

Montmorillonite

MWCNT :

Multiwall carbon nanotube

NP :

Nanoparticle

SEM :

Scanning electron microscopy

SWCNT :

Single-walled carbon nanotube

References

  1. Reshetnyak OV, Zaikov GE (eds) (2017) Computational and experimental analysis of functional materials. Apple Academic Press, CRC Press, Waretown

    Google Scholar 

  2. Pascault J-P, Williams RJJ (eds) (2010) Epoxy polymers: new materials and innovations. Wiley, Weinheim

    Google Scholar 

  3. Jin F-L, Li X, Park S-J (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11

    CAS  Google Scholar 

  4. Chen S, Xu Z, Zhang D (2018) Synthesis and application of epoxy-ended hyperbranched polymers. Chem Eng J 343:283–302

    CAS  Google Scholar 

  5. Irzhak VI, Rozenberg BA, Enikolopyan NS (1979) Cross-linked polymers. Synthesis, structure, properties, Nauka, Moscow [in Russian]

  6. Rozenberg BA (1986) Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Adv Polym Sci 75:113–165

    Google Scholar 

  7. Okabe T, Takehara T, Inose K, Hirano N, Nishikawa M, Uehara T (2013) Curing reaction of epoxy resin composed of mixed base resin and curing agent: experiments and molecular simulation. Polymer 54:4660–4668

    CAS  Google Scholar 

  8. Huang M, Shen Z, Wang Y, Li H, Luo T, Lei Y (2019) Thermo-mechanical properties and morphology of epoxy resins with co-poly (phthalazinone ether nitrile). J Polym Res 26:96

    Google Scholar 

  9. Zhou C, Li R, Luo W, Chen Y, Zou H, Liang M, Li Y (2016) The preparation and properties study of polydimethylsiloxane-based coatings modified by epoxy resin. J Polym Res 23:14

    Google Scholar 

  10. Lin J, Wu X, Zheng C, Zhang P, Li Q, Wang W, Yang Z (2014) A novolac epoxy resin modified polyurethane acylates polymer grafted network with enhanced thermal and mechanical properties. J Polym Res 21:435

    Google Scholar 

  11. Mittal V (ed) (2016) Spherical and fibrous filler composites. Wiley, Weinheim

    Google Scholar 

  12. Motavalli M, Czaderski C, Schumacher A, Gsell D (2010) In: Pohl G (ed) Textiles, polymers and composites for buildings. Elsevier, Amsterdam, pp 69–128

    Google Scholar 

  13. Ebrahimi F (ed) (2012) Nanocomposites - new trends and developments. InTech, Rijeka

    Google Scholar 

  14. Gu H, Ma C, Gu J, Guo J, Yan X, Huang J, Zhang Q, Guo Z (2016) An overview of multifunctional epoxy nanocomposites. J Mater Chem C 4:5890–5906

    CAS  Google Scholar 

  15. Irzhak TF, Irzhak VI (2017) Epoxy nanocomposites. Polym Sci, Ser A 59:791–825

    CAS  Google Scholar 

  16. Mittal V (2014) Polymer nanotubes nanocomposites: synthesis, properties and applications. Wiley, Weinheim

    Google Scholar 

  17. Kablov EN, Kondrashov SV, Yurkov GY (2013) Prospects of using carbonaceous nanoparticles in binders for polymer composites. Nanotechnol Russ 8:163–185

    Google Scholar 

  18. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    CAS  Google Scholar 

  19. Irzhak VI (2011) Epoxide composite materials with carbon nanotubes. Russ Chem Rev 80:787–806

    CAS  Google Scholar 

  20. Ates M, Eker AA, Eker B (2017) Carbon nanotube-based nanocomposites and their applications. J Adhes Sci Technol 31:1977–1997

    CAS  Google Scholar 

  21. Roy S, Petrova R, Mitra S (2018) Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol Rev 7:475–485

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385

    CAS  Google Scholar 

  23. Valentini L, Armentano I, Puglia D, Kenny JM (2004) Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy. Carbon 42:323–329

    CAS  Google Scholar 

  24. Tamburri E, Orlanducci S, Terranova ML, Valentini F, Palleschi G, Curulli A, Brunetti F, Passeri D, Alippi A, Rossi M (2005) Modulation of electrical properties in single-walled carbon nanotube/conducting polymer composites. Carbon 43:1213–1221

    CAS  Google Scholar 

  25. Sun L, Warren GL, O’Reilly JY, Everett WN, Lee SM, Davis D, Lagoudas D, Sue HJ (2008) Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46:320–328

    CAS  Google Scholar 

  26. Sun L, Warren GL, Davis D, Sue H-J (2011) Nylon toughened epoxy/SWCNT composites. J Mater Sci 46:207–214

    CAS  Google Scholar 

  27. Farhadinia M, Arab B, Jam JE (2016) Mechanical properties of CNT-reinforced polymer Nano-composites: a molecular dynamics study. Mech Adv Compos Struct 3:113–121

    Google Scholar 

  28. Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737

    CAS  PubMed  Google Scholar 

  29. Du J, Cheng H-M (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077

    CAS  Google Scholar 

  30. Monetta T, Acquesta A, Bellucci F (2015) Graphene/epoxy coating as multifunctional material for aircraft structures. Aerospace 2:423–434

    Google Scholar 

  31. Atlukhanova LB, Kozlov GV (2018) A carbon nanotubes aggregation in polymer nanocomposites. Mater Sci Forum 935:55–60

    Google Scholar 

  32. Ren F, Zhu G, Wang Y, Cui X (2014) Microwave absorbing properties of graphene nanosheets/epoxy-cyanate ester resins composites. J Polym Res 21:585

    Google Scholar 

  33. Wu Q, Li M, Gu Y, Li Y, Zhang Z (2014) Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite. Compos Part A Appl Sci Manuf 56:143–149

    CAS  Google Scholar 

  34. Diez-Pascual AM, Gómez-Fatou MA, Ania F et al (2015) Nanoindentation in polymer nanocomposites. Prog Mater Sci 67:1–94

    CAS  Google Scholar 

  35. Zhao Y-L, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171

    CAS  PubMed  Google Scholar 

  36. Terrones M, Martin O, González M et al (2011) Interphases in graphene polymer-based nanocomposites: Achievements and challenges. Adv Mater 23:5302–5310

    CAS  PubMed  Google Scholar 

  37. Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35:637–659

    CAS  PubMed  Google Scholar 

  38. Summ BD, Ivanova NI (2000) The use of objects and methods of colloid chemistry in nanochemistry. Russ Chem Rev 69:911–923

    CAS  Google Scholar 

  39. Kozlov GV (2015) Structure and properties of particulate-filled polymer nanocomposites. Physics-Uspekhi 58:33–60

    CAS  Google Scholar 

  40. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    CAS  PubMed  Google Scholar 

  41. Kong L, Enders A, Rahman TS, Dowben PA (2014) Molecular adsorption on graphene. J Phys Condens Matter 26:443001–443028

    PubMed  Google Scholar 

  42. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112-113:75–93

    CAS  Google Scholar 

  43. Lvov Y, Abdullayev E (2013) Green and functional polymer - clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1791

    CAS  Google Scholar 

  44. Jagtap SB, Rao VS, Barman S, Ratna D (2015) Nanocomposites based on epoxy resin and organoclay functionalized with a reactive modifier having structural similarity with the curing agent. Polymer 63:41–71

    CAS  Google Scholar 

  45. Aufray M, Roche AA (2008) Is gold always chemically passive? Study and comparison of the epoxy-amine/metals interphases. Appl Surf Sci 254:1936–1941

    CAS  Google Scholar 

  46. Mercier D, Rouchaud JC, Barthès-Labrousse MG (2008) Interaction of amines with native aluminum oxide layers in non-aqueous environment: application to the understanding of the formation of epoxy-amine/metal interphases. Appl Surf Sci 254:6495–6503

    CAS  Google Scholar 

  47. Henz BJ, Hawa T, Zachariah MR (2008) Mechano-chemical stability of gold nanoparticles coated with alkanethiolate SAMs. Langmuir 24:773–783

    CAS  PubMed  Google Scholar 

  48. Jiménez A, Sarsa A, Blázquez M et al (2010) A molecular dynamics study of the surfactant surface density of alkanethiol self-assembled monolayers on gold nanoparticles as a function of the radius. J Phys Chem 114:21309–21314

    Google Scholar 

  49. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir 14:17–30

    CAS  Google Scholar 

  50. Badamshina ER, Gafurova MP, Estrin YI (2010) Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes. Russ Chem Rev 79:945–979

    CAS  Google Scholar 

  51. Seong M, Kim DS (2015) Effects of facile amine-functionalization on the physical properties of epoxy/graphene nanoplatelets nanocomposites. J Appl Polym Sci 132:42269–42275

    Google Scholar 

  52. Sun P, Liu G, Lv D et al (2016) Simultaneous improvement in strength, toughness, and thermal stability of epoxy/halloysite nanotubes composites by interfacial modification. J Appl Polym Sci 133:43249–43257

    Google Scholar 

  53. Sahoo NG, Cheng HKF, Li L, Chan SH, Judeh Z, Zhao J (2009) Specific Functionalization of Carbon Nanotubes for Advanced Polymer Nanocomposites. Adv Funct Mater 19:3962–3971

    CAS  Google Scholar 

  54. Rubio N, Au H, Leese HS, Hu S, Clancy AJ, Shaffer MSP (2017) Grafting from versus grafting to approaches for the functionalization of graphene nanoplatelets with poly(methyl methacrylate). Macromolecules 50:7070–7079

    CAS  Google Scholar 

  55. Zdyrko B, Luzinov I (2011) Polymer brushes by the “grafting to” method. Macromol Rapid Commun 32:859–869

    CAS  PubMed  Google Scholar 

  56. Allaoui A, El Bounia N-E (2009) How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? – a review. Express Polym Lett 3:588–594

    CAS  Google Scholar 

  57. Putz KW, Palmeri MJ, Cohn RB, Andrews R, Brinson LC (2008) Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules 41:6752–6756

    CAS  Google Scholar 

  58. Auad ML, Mosiewicki MA, Uzunpinar C, Williams RJJ (2010) Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface. Polym Eng Sci 50:183–190

    CAS  Google Scholar 

  59. Wang S, Liang R, Wang B, Zhang C (2009) Covalent addition of diethyltoluenediamines onto carbon nanotubes for composite application. Polym Compos 30:1050–1057

    CAS  Google Scholar 

  60. Barber AH, Cohen SR, Kenig S, Wagner HD (2004) Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos Sci Technol 64:2283–2289

    CAS  Google Scholar 

  61. Zhang Y, Wang Y, Yu J, et. al. (2014) Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55: 4990–5000

    CAS  Google Scholar 

  62. Wan Y-J, Gong L-X, Tang L-C, Wu LB, Jiang JX (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A Appl Sci Manuf 64:79–108

    CAS  Google Scholar 

  63. Wan Y-J, Tang L-C, Gong L-X, Yan D, Li YB, Wu LB, Jiang JX, Lai GQ (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480

    CAS  Google Scholar 

  64. Deng H, Wu F, Chen L et al (2014) Enhanced interfacial interaction of epoxy nanocomposites with activated graphene nanosheets. J Appl Polym Sci 131:41164–41171

    Google Scholar 

  65. Li Z, Wang R, Young RJ, Deng L, Yang F, Hao L, Jiao W, Liu W (2013) Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer 54:6437–6446

    CAS  Google Scholar 

  66. Shanmugharaj AM, Yoon JH, Yang WJ, Ryu SH (2013) Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J Colloid Interface Sci 401:148–154

    CAS  PubMed  Google Scholar 

  67. Guan L-Z, Wan Y-J, Gong L-X, Yan D, Tang LC, Wu LB, Jiang JX, Lai GQ (2014) Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J Mater Chem A 2:15058–15069

    CAS  Google Scholar 

  68. Konnola R, Joji J, Parameswaranpillai J, Joseph K (2015) Structure and thermo-mechanical properties of CTBN-grafted-GO modified epoxy/DDS composites. RSC Adv 5:61775–61801

    CAS  Google Scholar 

  69. Becker O, Simon GP (2005) Epoxy layered silicate nanocomposites. Adv Polym Sci 179:29–82

    CAS  Google Scholar 

  70. Paiva LB, de Morales AR, Valenzuela Diaz FR (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42:8–24

    Google Scholar 

  71. Yang L, Phua SL, Teo JKH, Toh CL, Lau SK, Ma J, Lu X (2011) A biomimetic approach to enhancing interfacial interactions: Polydopamine-coated clay as reinforcement for epoxy resin. ACS Appl Mater Interfaces 3:3026–3032

    CAS  PubMed  Google Scholar 

  72. Jlassi K, Chandran S, Poothanari MA, Benna-Zayani M, Thomas S, Chehimi MM (2016) Clay/polyaniline hybrid through diazonium chemistry: conductive nanofiller with unusual effects on interfacial properties of epoxy nanocomposites. Langmuir 32:3514–3545

    CAS  PubMed  Google Scholar 

  73. Du M, Guo B, Jia J (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582

    CAS  Google Scholar 

  74. Prashantha K, Lacrampe M-F, Krawczak P (2013) Halloysite nanotubes-polymer nanocomposites: a new class of multifaceted materials. Adv Mater Manufact Charact 3:11–14

    Google Scholar 

  75. Gooding JJ, Ciampi S (2011) The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chem Soc Rev 40:2704–2718

    CAS  PubMed  Google Scholar 

  76. Ghorai PK, Glotzer SC (2007) Molecular dynamics simulation study of self-assembled monolayers of alkanethiol surfactants on spherical gold nanoparticles. J Phys Chem C 111:15857–15862

    CAS  Google Scholar 

  77. Kaushik AP, Clancy P (2012) Explicit all-atom modeling of realistically sized ligand-capped nanocrystals. J Chem Phys 136:114702–114714

    PubMed  Google Scholar 

  78. Christensen RM (1979) Mechanics of composite materials. Wiley, New York

    Google Scholar 

  79. Zhuang GS, Sui GX, Sun ZS, Yang R (2006) Pseudoreinforcement effect of multiwalled carbon nanotubes in epoxy matrix composites. J Appl Polym Sci 102:3664–3672

    CAS  Google Scholar 

  80. Ayatollahi M, Shadlou S, Shokrieh M et al (2011) Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym Test 30:548–556

    CAS  Google Scholar 

  81. Omidi M, Rokni HDT, Milani AS et al (2010) Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48:3218–3228

    CAS  Google Scholar 

  82. Martone A, Faiella G, Antonucci V, Giordano M, Zarrelli M (2011) The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix. Compos Sci Technol 71:1117–1123

    CAS  Google Scholar 

  83. Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535

    CAS  Google Scholar 

  84. Choi WJ, Powell RL, Kim DS (2009) Curing behavior and properties of epoxy nanocomposites with amine functionalized multiwall carbon nanotubes. Polym Compos 30:415–421

    CAS  Google Scholar 

  85. Chen X, Wang J, Lin M, Zhong W, Feng T, Chen X, Chen J, Xue F (2008) Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Mater Sci Eng A 492:236–242

    Google Scholar 

  86. Yoonessi M, Lebrón-Colón M, Scheiman D, Meador MA (2014) Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites. ACS Appl Mater Interfaces 6:16621–16630

    CAS  PubMed  Google Scholar 

  87. Ma PC, Mo SY, Tang BZ, Kim JK (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48:1824–1834

    CAS  Google Scholar 

  88. Lachman N, Wagner HD (2010) Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. Compos Part A Appl Sci Manuf 41:1093–1098

    Google Scholar 

  89. Grachev VP, Kondrashov SV, Akatenkov RV et al (2014) Modification of epoxy polymers by small additives of multiwall carbon nanotube. Polym Sci, Ser A 56:330–336

    Google Scholar 

  90. Corcione C, Freuli F (2013) The aspect ratio of epoxy matrix nanocomposites reinforced with graphene stacks. Polym Eng Sci 53:531–539

    CAS  Google Scholar 

  91. Wang X, Jin J, Song M (2013) An investigation of the mechanism of graphene toughening epoxy. Carbon 65:324–333

    CAS  Google Scholar 

  92. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ASC Nano 3:3884–3890

    CAS  Google Scholar 

  93. Martin-Gallego M, Bernal MM, Hernandez M, Verdejo R, Lopez-Manchado MA (2013) Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polym J 49:1347–1353

    CAS  Google Scholar 

  94. Sun X, Sun H, Li H, Peng H (2013) Developing polymer composite materials: carbon nanotubes or graphene? Adv Mater 25:5153–5176

    CAS  PubMed  Google Scholar 

  95. Tang X, Zhou Y, Peng M (2015) Green preparation of epoxy/graphene oxide nanocomposites using a glycidylamine epoxy resin as the surface modifier and phase transfer agent of graphene oxide. ACS Appl Mater Interfaces 8:1854–1894

    Google Scholar 

  96. Park JK, Kim DS (2014) Effects of an aminosilane and a tetra-functional epoxy on the physical properties of di-functional epoxy/graphene nanoplatelets nanocomposites. Polym Eng Sci 54:969–976

    CAS  Google Scholar 

  97. Wang F, Drzal LT, Qin Y et al (2016) Effects of functionalized graphene nanoplatelets on the morphology and properties of epoxy resins. High Perform Polym 28:525–536

    CAS  Google Scholar 

  98. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49

    CAS  Google Scholar 

  99. Ni Y, Chen L, Teng K, Shi J, Qian X, Xu Z, Tian X, Hu C, Ma M (2015) Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl Mater Interfaces 7:11583–11591

    CAS  PubMed  Google Scholar 

  100. Kusmono K, Wildan MW, Mohd Ishak ZA (2013) Preparation and properties of clay-reinforced epoxy nanocomposites. Int J Polym Sci 2013:ID690675–ID690682

    Google Scholar 

  101. Wang M, Fan X, Thitsartarn W, He C (2015) Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses. Polymer 58:43–52

    CAS  Google Scholar 

  102. Jia QM, Zheng M, Xu CZ, Chen HX (2006) The mechanical properties and tribological behavior of epoxy resin composites modified by different shape nanofillers. Polym Adv Technol 17:168–173

    CAS  Google Scholar 

  103. Rafiee M, Yavari F, Rafiee J et al (2011) Fullerene-epoxy nanocomposites – enhanced mechanical properties at low nanofiller loading. J Nanopart Res 13:733–737

    CAS  Google Scholar 

  104. Zuev VV (2012) The mechanisms and mechanics of the toughening of epoxy polymers modified with fullerene C60. Polym Eng Sci 52:2518–2522

    CAS  Google Scholar 

  105. Pikhurov DV, Zuev VV (2014) The effect of fullerene C60 on the mechanical and dielectrical behavior of epoxy resins at low loading. AIP Conf Proc 1599:453–456

    CAS  Google Scholar 

  106. Javidparvar AA, Ramezanzadeh B, Ghasemi E (2016) Effects of surface morphology and treatment of iron oxide nanoparticles on the mechanical properties of an epoxy coating. Prog Org Coat 90:10–21

    CAS  Google Scholar 

  107. Sun T, Fan H, Wang Z, Liu X, Wu Z (2015) Modified nano Fe2O3-epoxy composite with enhanced mechanical properties. Mater Des 87:10–32

    CAS  Google Scholar 

  108. Al-Ajaj IA, Abd MM, Jaffer HI (2013) Mechanical properties of micro and nano TiO2/epoxy composites. International journal of mining. Metallurgy & Mechanical Engineering (IJMMME) 1:93–97

    Google Scholar 

  109. Bogdanova LM, Kuzub LI, Dzhavadyan EA, Torbov VI, Dremova NN, Pomogailo AD (2014) Mechanical properties of epoxy composites based on silver nanoparticles formed in situ. J Polym Sci, Ser A 56:304–310

    CAS  Google Scholar 

  110. Stauffer G, Author (1985) Introduction to percolation theory. Taylor and Francis, London

    Google Scholar 

  111. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215

    CAS  Google Scholar 

  112. Guadagno L, De Vivo B, Di Bartolomeo A et al (2011) Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon 49:1919–1930

    CAS  Google Scholar 

  113. Liu L, Etika KC, Liao K-S, Hess LA, Bergbreiter DE, Grunlan JC (2009) Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol Rapid Commun 30:627–632

    CAS  PubMed  Google Scholar 

  114. Rakov EG (2013) Carbon nanotubes in new materials. Russ Chem Rev 82:27–47

    Google Scholar 

  115. Ivanovskii AL (2012) Graphene-based and graphene-like materials. Russ Chem Rev 81:571–605

    Google Scholar 

  116. An J-E, Jeong YG (2013) Structure and electric heating performance of graphene/epoxy composite films. Eur Polym J 49:1322–1330

    CAS  Google Scholar 

  117. Vavouliotis A, Fiamegou E, Karapappas P, Psarras GC, Kostopoulos V (2010) Dc and ac conductivity in epoxy resin/multiwall carbon nanotubes percolative system. Polym Compos 31:1874–1880

    CAS  Google Scholar 

  118. Seidel GD, Lagoudas DC (2009) A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites. J Compos Mater 43:917–942

    CAS  Google Scholar 

  119. Thakre PR, Bisrat Y, Lagoudas DC (2010) Electrical and mechanical properties of carbon nanotube-epoxy nanocomposites. J Appl Polym Sci 116:191–202

    CAS  Google Scholar 

  120. Yuen SM, Ma CM, Wu HH et al (2007) Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites. J Appl Polym Sci 103:1272–1278

    CAS  Google Scholar 

  121. Tsonos B, Kanapitsas A, Psarras GC et al (2015) Effect of ZnO nanoparticles on the dielectric/electrical and thermal properties of epoxy-based nanocomposites. Sci Adv Mater 7:588–597

    CAS  Google Scholar 

  122. Martinez-Garcia JC, Rzoska SJ, Drozd-Rzoska A, Starzonek S, Mauro JC (2015) Fragility and basic process energies in vitrifying systems. Sci Rep 5:8314–8320

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mathioudakis GN, Patsidis AC, Psarras GC (2014) Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim 116:27–33

    CAS  Google Scholar 

  124. Patsidis A, Psarras GC (2008) Dielectric behaviour and functionality of polymer matrix – ceramic BaTiO3 composites. Express Polym Lett 2:718–726

    CAS  Google Scholar 

  125. Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 15:12–23

    CAS  Google Scholar 

  126. Singha S, Thomas MJ (2009) Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans Dielectr Electr Insul 16:531–542

    CAS  Google Scholar 

  127. Wang Q, Chen G (2014) Effect of pre-treatment of nanofillers on the dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 21:1809–1816

    CAS  Google Scholar 

  128. Huang X, Xie L, Yang K, Wu C, Jiang P, Li S, Wu S, Tatsumi K, Tanaka T (2014) Role of interface in highly filled epoxy/BaTiO3 nanocomposites. Part I-correlation between nanoparticle surface chemistry and nanocomposite dielectric property. IEEE Trans Dielectr Electr Insul 21:467–479

    CAS  Google Scholar 

  129. Gonon P, Boudefel A (2006) Electrical properties of epoxy/silver nanocomposites. J Appl Phys 99:024308–024316

    Google Scholar 

  130. Chiteme C, McLachlan DS (2003) Ac and dc conductivity, magnetoresistance, and scaling in cellular percolation systems. Phys Rev B 67:024206–024223

    Google Scholar 

  131. Nam S, Cho HW, Kim T et al (2011) Effects of silica particles on the electrical percolation threshold and thermomechanical properties of epoxy/silver nanocomposites. Appl Phys Lett 99:043104–043107

    Google Scholar 

  132. Cho HW, Nam S, Lim S et al (2014) Effects of size and interparticle interaction of silica nanoparticles on dispersion and electrical conductivity of silver/epoxy nanocomposites. J Appl Phys 115:154307–154314

    Google Scholar 

  133. Vescovo L, Sangermano M, Scarazzin R et al (2010) In-situ-synthetized silver/epoxy nanocomposites: electrical characterization by means of dielectric spectroscopy. Macromol Chem Phys 211:1933–1939

    CAS  Google Scholar 

  134. Kortaberria G, Sangermano M, Mondragon I (2012) In situ synthetized silver/epoxy nanocomposites: electrical characterization in terms of dielectric relaxation spectroscopy. Macromol Symp 321-322:112–117

    CAS  Google Scholar 

  135. Novikov GF, Rabenok EV, Bogdanova LM et al (2017) Dielectric properties of films of ag-ED20 epoxy nanocomposite synthesized in situ. Temperature dependence of direct current conductivity. Polym Sci Ser A 59:741–750

    CAS  Google Scholar 

  136. Novikov GF, Rabenok EV, Bogdanova LM et al (2017) Temperature dependence of direct current conductivity in ag-ED20 nanocomposite films. Russ J Phys Chem A 91:1971–1975

    CAS  Google Scholar 

  137. Kortaberria G, Arruti P, Modragon I et al (2011) Dynamics of in situ synthetized silver-epoxy nanocomposites as studied by dielectric relaxation spectroscopy. J Appl Polym Sci 120:2361–2367

    CAS  Google Scholar 

  138. Gu H, Tadakamalla S, Huang Y, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. ACS Appl Mater Interfaces 4:5613–5624

    CAS  PubMed  Google Scholar 

  139. Huang J, Cao Y, Zhang X, Li Y, Guo J, Wei S, Peng X, Shen TD, Guo Z (2015) Magnetic epoxy nanocomposites with superparamagnetic MnFe2O4 nanoparticles. AIP Adv 5:097183–097198

    Google Scholar 

  140. KR O’N, Brinzari TV, Wright JB et al (2014) Pressure-induced magnetic crossover driven by hydrogen bonding in CuF2(H2O)2(3-chloropyridine). Sci Rep 4:6054–6059

    Google Scholar 

  141. Kanapitsas A, Tsonos C, Psarras GC, Kripotou S (2016) Barium ferrite/epoxy resin nanocomposite system: fabrication, dielectric, magnetic and hydration studies. Express Polym Lett 10:227–237

    Google Scholar 

  142. Zhang X, Alloul O, He Q, Zhu J, Verde MJ, Li Y, Wei S, Guo Z (2013) Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 54:3594–3604

    CAS  Google Scholar 

  143. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Multifunctional composite core–shell nanoparticles. Nanoscale 3:4474–4502

    CAS  PubMed  Google Scholar 

  144. Zhu J, Wei S, Ryu J, Sun L, Luo Z, Guo Z (2010) Magnetic epoxy resin nanocomposites reinforced with core-shell structured Fe@FeO nanoparticles: fabrication and property analysis. ACS Appl Mater Interfaces 2:2100–2107

    CAS  Google Scholar 

  145. Zhang X, Alloul O, Zhu J, He Q, Luo Z, Colorado HA, Haldolaarachchige N, Young DP, Shen TD, Wei S, Guo Z (2013) Iron-core carbon-shell nanoparticles reinforced electrically conductive magnetic epoxy resin nanocomposites with reduced flammability. RSC Adv 3:9453–9464

    CAS  Google Scholar 

  146. Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced thermal conductivity of epoxygraphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–743

    CAS  PubMed  Google Scholar 

  147. Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 91:201910–201913

    Google Scholar 

  148. Corcione C, Freuli F, Maffezzoli A (2012) The aspect ratio of epoxy matrix nanocomposites reinforced with graphene stacks. Polym Eng Sci 53:531–539

    Google Scholar 

  149. Teng C-C, C-CM M, Lu C-H et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116

    CAS  Google Scholar 

  150. Nan C-W, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85:3549–3551

    CAS  Google Scholar 

  151. Yu S, Yang S, Cho M (2011) Multiscale modeling of cross-linked epoxy nanocomposites to characterize the effect of particle size on thermal conductivity. J Appl Phys 110:124302–124311

    Google Scholar 

  152. Zhang G, Xia Y, Wang H et al (2010) A percolation model of thermal conductivity for filled polymer composites. J Compos Mater 44:963–971

    CAS  Google Scholar 

  153. Pashayi K, Fard HR, Lai F, Iruvanti S, Plawsky J, Borca-Tasciuc T (2012) High thermal conductivity epoxy-silver composites based on selfconstructed nanostructured metallic networks. J Appl Phys 111:104310–104316

    Google Scholar 

  154. Liu D, Zhao W, Liu S, Cen Q, Xue Q (2017) In situ regulating of surface morphologies, anti-corrosion and tribological properties of epoxy resin coatings by heat treatment. Surf Topogr 5:024003–024013

    Google Scholar 

  155. Zhai W, Srikanth N, Kong LB, Zhou K (2017) Carbon nanomaterials in tribology. Carbon 119:150–171

    CAS  Google Scholar 

  156. Dhieb H, Buijnsters J, Eddoumy F et al (2011) Surface damage of unidirectional carbon fiber reinforced epoxy composites under reciprocating sliding in ambient air. Compos Sci Technol 71:1769–1776

    CAS  Google Scholar 

  157. Gbadeyan OJ, Kanny K, Turup Pandurangan M (2018) Tribological, mechanical, and microstructural of multiwalled carbon nanotubes/short carbon fiber epoxy composites. J Tribol 140:022002–022029

    Google Scholar 

  158. Shivamurthy B, Murthy K, Anandhan S (2018) Tribology and mechanical properties of carbon fabric/MWCNT/epoxy composites. Adv Tribol 2018 article ID 1508145/1-10

  159. Zhang Y, Zhang D, Wei X, Zhong S, Wang J (2018) Enhanced tribological properties of polymer composite coating containing graphene at room and elevated temperatures. Coatings 8:91–102

    Google Scholar 

  160. Wu F, Zhao W, Chen H et al (2016) Interfacial structure and tribological behaviours of epoxy resin coating reinforced with graphene and graphene oxide. Surf Interface Anal 49:85–92

    Google Scholar 

  161. Liu D, Zhao W, Liu S, Cen Q, Xue Q (2016) Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf Coat Technol 286:354–364

    CAS  Google Scholar 

  162. Upadhyay RK, Kumar A (2018) A novel approach to minimize dry sliding friction and wear behavior of epoxy by infusing fullerene C70 and multiwalled carbon nanotubes. Tribol Int 120:455–464

    CAS  Google Scholar 

  163. Shen X-J, Pei X-Q, Liu Y, Fu SY (2014) Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites. Compos B Eng 57:120–125

    CAS  Google Scholar 

  164. Shen X-J, Pei X-Q, Fu S-Y, Friedrich K (2013) Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer 54:1234–1242

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Uflyand.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irzhak, V.I., Dzhardimalieva, G.I. & Uflyand, I.E. Structure and properties of epoxy polymer nanocomposites reinforced with carbon nanotubes. J Polym Res 26, 220 (2019). https://doi.org/10.1007/s10965-019-1896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1896-0

Keywords

Navigation