Skip to main content
Log in

Photo- and Nanoelectronics Based on Two-Dimensional Materials. Part I. Two-Dimensional Materials: Properties and Synthesis

  • REVIEW
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

We review the synthesis methods, crystal parameters, and band structure of two-dimensional and quasi-two-dimensional materials, including graphene; group IV‒VIII transition metal dichalcogenides; 2D binary chalcogenides \({{{\text{A}}}^{{{\text{IV}}}}}{{{\text{B}}}^{{{\text{VI}}}}}\), \({\text{A}}_{m}^{{{\text{IV}}}}{\text{B}}_{n}^{{{\text{VI}}}}\), \({{{\text{A}}}^{{{\text{III}}}}}{{{\text{B}}}^{{{\text{VI}}}}}\), \({\text{A}}_{m}^{{{\text{III}}}}{\text{B}}_{n}^{{{\text{VI}}}}\), and \({{{\text{A}}}^{{{\text{II}}}}}{{{\text{B}}}^{{{\text{VI}}}}}\) of group IV, III, and II transition metals; Ti, Zr, Hf, Bi, and Sb trichalcogenides; \({{{\text{A}}}^{{\text{V}}}}{{{\text{B}}}^{{\text{V}}}}\) (AsN, AsP, PN, SbAs, SbN, SbP) 2D materials; \({{{\text{A}}}^{{{\text{III}}}}}{\text{N}}\) (A = Al, Ga, In, B) 2D nitrides; monoatomic 2D materials (phosphorene P, plumbene Pb, stanene Sn, germanene Ge, silicene Si, antimonene Sb, arsenene As, bismuthene Bi, borophene B, and octo-nitrogene 8‑N); functionalized graphene and silicon carbide SiC; CO, GeO, and SnO 2D oxides; 2D transitional metal dioxides, Ge, and Sn; 2D trioxides MoO3 and WO3; and transition metal di- and trihalides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

Notes

  1. HOPG is the form of graphite with an angular deviation of the с axis from the normal to the basal plane by less than 1 angular degree, which is obtained from gaseous hydrocarbons (e.g., methane) at a temperature of 1400–1500°С with subsequent heating of the obtained pyrocarbon in vacuum to a temperature of 3000°С under a pressure of 50 MPa.

  2. The chemical methods for obtaining graphene in the form of aqueous and organic solutions and dispersions from oxides and intercalated graphite compounds, including those with the use of polymers, biomolecules, surfactants, as well as chemical reactions with the possible participation of the graphene surfaces were reviewed in [8].

  3. QFEG (quasi-free-standing graphene) is graphene grown on one of the Pt, Ir, or Cu substrates, which weakly interact with them and is characterized by the linear dispersion of the energy of π electrons near the Dirac points.

  4. The TiS3 synthesis temperature should be no higher than 630°С, since, at a temperature of 632°С, titanium trichalcogenide decomposes into TiS2 and sulfur.

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorienko, and A. A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. A. K. Geim, Science, 324, 1530 (2009).

    Article  Google Scholar 

  3. A. K. Geim, Phys. Usp. 54 (12), (2011).

  4. K. S. Novoselov, Phys. Usp. 54, 1227–1242 (2011).

  5. K. J. Koski and Y. Cui, ACS Nano 7, 3739 (2013).

    Article  Google Scholar 

  6. Ti. Zhuan, “Graphene patents lay base for industry boom,” China Daily, 03/02/2017, p. 17.

  7. A. C. Ferrari et al., “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, 1–343 (2014). https://doi.org/10.1039/C4NR01600A

  8. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, Phys. Usp. 54, 227 (2011).

    Article  Google Scholar 

  9. E. D. Grayfer, V. G. Makotchenko, A. S. Nazarov, S.‑J. Kim, and V. E. Fedorov, Rus. Chem. Rev. 80, 751–770 (2011).

  10. F. Bonaccorso, A. Lombardo, T. Hasan, L. Colombo, and A. C. Ferrari, Mater. Today 15, 564 (2012),

    Article  Google Scholar 

  11. P. Avouris and C. Dimitrakopoulos, Mater. Today, 15, 86 (2012).

    Article  Google Scholar 

  12. J. B. Volkova, E. B. Rezchikova, and V. A. Shakhnov, Eng. J., No. 6 (2013).

  13. P. B. Sorokin and L. A. Chernozatonskii, Phys. Usp. 56, 105–122 (2013).

    Article  Google Scholar 

  14. L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artukh, Rus. Chem. Rev. 83, 251–279 (2014).

    Google Scholar 

  15. L. A. Chernozatonskii and A. A. Artukh, Phys. Usp. 61, 2–28 (2018).

    Article  Google Scholar 

  16. K. S. Novoselov, D. Jiang, F. Chedin, T. J. Booth, V. V. Khot-kevich, S. V. Morozov, and A. K. Geim, Proc. Nat. Acad. Sci. (USA) 102, 10451 (2005).

    Article  Google Scholar 

  17. X. Li, G. Zhang, X. Bai, X. Wang, E. Wang, and H. Dai, Nature Nanotechnol. 3, 538 (2008).

    Article  Google Scholar 

  18. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nature Nanotechnol. 3, 101 (2008).

    Article  Google Scholar 

  19. Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.-M. Cheng, ACS Nano 3, 411 (2009).

    Article  Google Scholar 

  20. S. Z. Mortazavi, P. Parvin, and A. Reyhani, Laser Phys. Lett. 9, 547 (2012).

    Article  Google Scholar 

  21. A. V. Abramov, S. M. Arakelian, D. A. Kochev, S. A. Markov, V. G. Prokoshev, and K. S. Kharkov, Patent RU 2572325, 12.01.2015.

  22. E. R. Rollings, G.-H. Gweon, S. Y. Zhou, R. S. Mun, J. L. McChesney, B. S. Husson, A. V. Fedorov, P. N. First, W. A. De Heer, and A. Lanzara, J. Phys. Chem. Sol. 67, 2172 (2006).

    Article  Google Scholar 

  23. J. Hass, R. Feng, T. Li, and Z. Zong, W. A. De Heer, P. N. First, E. H. Conrad, C. A. Jeffrey, and C. Berger, Appl. Phys. Lett. 89, 143106 (2006).

    Article  Google Scholar 

  24. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Mater. 8, 203 (2009).

    Article  Google Scholar 

  25. P. Sutter, Nature Mater. 8, 171 (2009).

    Article  Google Scholar 

  26. M. Naguib and Y. Gogotsi, Acc. Chem. Res., 48 (1), 128 (2015).

    Article  Google Scholar 

  27. N. I. Alekseev, A. A. Kalnin, D. D. Karmanov, V. V. Luchinin, S. A. Tarasov, and N. A. Charykov, J. Phys. Chem. 87, 1761 (2013).

    Google Scholar 

  28. P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nat. Mater. 7, 406 (2008).

    Article  Google Scholar 

  29. J. Coraux, A. T. N’Diae, C. Busse, and T. Michley, Nano Lett. 8, 565 (2008).

    Article  Google Scholar 

  30. C. Oshima, E. Bannai, T. Tanaka, and S. Kawai, Jpn. J. Appl. Phys. 16, 965 (1977).

    Article  Google Scholar 

  31. I. V. Antonova, Phys. Usp. 56, 1013–1020 (2013).

    Article  Google Scholar 

  32. Keun S. Kim, Y. Zhao, S. Y. Lee, J. M. Kim, Kwang S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).

    Article  Google Scholar 

  33. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).

    Article  Google Scholar 

  34. S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Yi. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nature Nanotechnology 5, 574 (2010).

    Article  Google Scholar 

  35. X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, J. Am. Chem. Soc. 133, 2816 (2011).

    Article  Google Scholar 

  36. E. O. Polat, O. Balci, N. Kakenov, H. B. Uzlu, C. Kokabas, and R. Dahiya, Sci. Rep. 5, 16744 (2015).

    Article  Google Scholar 

  37. W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S.-S. Pei, Nanotecnology 23, 035603 (2012).

    Article  Google Scholar 

  38. M. Marchene, D. Janner, T. L. Chen, V. Finazzi, and V. Pruneri, Opt. Mater. Express 6, 2487 (2016).

    Article  Google Scholar 

  39. K. Sulaiman, A. Y. Ali, D. Elkington, K. Ferron, K. F. Anderson, W. Belcher, P. Dastoor, and X. Zhou, Carbon N.Y. 107, 325 (2016).

  40. J. Jang, M. Son, S. Chung, K. Kim, C. Cho, B. H. Lee, and M. Ham, Sci. Rep. 5, 17955 (2015).

    Article  Google Scholar 

  41. I. Vlassiouk, M. Regmi, P. Fulvio, P. Datskos, G. Eres, and S. Smirnov, ACS Nano 5, 6069 (2011).

    Article  Google Scholar 

  42. T.-O. Terasawa and K. Saiki, Carbon 50, 869 (2012).

    Article  Google Scholar 

  43. D. A. Boyd, W.-H. Lin, C.-C. Hsu, M. L. Teague, C.‑C. Chen, Y.-Y. Lo, W.-Y. Chan, W.-B. Su, T.‑C. Cheng, C.-S. Chang, C.-I. Wu, and N.-C. Yeh, Nature Commun. 6, 6620 (2015). https://doi.org/10.1038/ncomms7620

    Article  Google Scholar 

  44. J.-I. Fujita, T. Hiyama, A. Hirukawa, T. Kondo, J. Nakamura, S.-I. Ito, R. Araki, M. Takeguchi, and W. W. Pai, Sci. Rep. 7, 12371 (2017).

    Article  Google Scholar 

  45. G. Ding, Y. Zhu, S. Wang, Q. Gong, L. Sun, T. Wu, X. Xie, and M. Jiang, Carbon 53, 321 (2013).

    Article  Google Scholar 

  46. J. Wang, M. Zeng, L. Tan, B. Dai, Y. Deng, M. Rummeli, H. Xu, Z. Li, S. Wang, L. Peng, J. Eckert, and L. Fu, Sci. Rep. 3, 2670 (2013).

    Article  Google Scholar 

  47. K. Murakami, S. Tanaka, A. Hirukawa, T. Hiyama, T. Kuwajima, E. Kano, M. Takeguchi, and Fujita J. Jun-ichi, Appl. Phys. Lett. 106, 093112 (2015).

    Article  Google Scholar 

  48. B. Zhang, W. H. Lee, R. Piner, I. Kholmanov, Y. Wu, H. Li, H. Ji, and R. S. Ruoff, ACS Nano 3, 2471 (2012).

    Article  Google Scholar 

  49. A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek, and M. Siaj, Carbon 49, 4204 (2011).

    Article  Google Scholar 

  50. T. Wu, G. Ding, H. Shen, H. Wang, L. Sun, Y. Zhu, D. Jiang, and X. Xie, Nanoscale 5, 5456–5461 (2013). https://doi.org/10.1039/C3NR00963G

  51. M. H. Rummeli, A. Bachmatiuk, A. Scott, F. Borrnert, G. H. Warner, V. Hoffman, J.-H. Lin, G. Cuniberti, and B. Buchner, ACS Nano, 4, 4206 (2010).

    Article  Google Scholar 

  52. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, Nature 468, 549 (2010).

    Article  Google Scholar 

  53. N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, and Z. Liu, Nano Lett. 11, 297 (2011).

    Article  Google Scholar 

  54. W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Krupka, and J. M. Baranowski, Nano Lett. 11, 1786 (2011).

    Article  Google Scholar 

  55. M. A. Fanton, J. A. Robinson, C. Puls, Y. Liu, M. J. Hollander, B. E. Weiland, M. LaBella, K. Trumbull, R. Kasarda, C. Howsare, J. Stitt, and D. W. Snyder, ACS Nano 5, 8062 (2011).

    Article  Google Scholar 

  56. J. Sun, N. Lindvall, M. T. Cole, K. B. K. Teo, and A. Yurgens, Appl. Phys. Lett. 98, 252107 (2011).

    Article  Google Scholar 

  57. A. Scott, A. Dianat, F. Börrnert, A. Bachmatiuk, S. Zhang, J. H. Warner, E. Borowiak-Paleń, M. Knupfer, B. Büchner, G. Cuniberti, and M. H. Rummeli, Appl. Phys. Lett. 98, 073110 (2011).

    Article  Google Scholar 

  58. X. Ding, G. Ding, X. Xie, F. Huang, and M. Jiang, Carbon 49, 2552 (2011).

    Article  Google Scholar 

  59. M. Moseler, P. Gumbsch, C. Casiraghi, A. C. Ferrari, and J. Robertson, Science 309, 1545 (2005).

    Article  Google Scholar 

  60. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, New York, 2012).

    Book  Google Scholar 

  61. Z. Z. Alisultanov, JETP 122, 341 (2016).

    Article  Google Scholar 

  62. A. Bostwick, T. Ohta, J. L. McChesney, K. V. Emtsev, T. Seyller, Horn K. Karsten, and E. Rotenberg, New J. Phys. 9, 385 (2007).

    Article  Google Scholar 

  63. S. V. Morozov, Phys. Usp. 55, 408–412 (2012).

    Article  Google Scholar 

  64. V. L. Kalikhman and Ya. S. Umanskii, Sov. Phys. Usp. 15, 728–741 (1973).

    Article  Google Scholar 

  65. X. Duan, C. Wang, A. Pan, R. Yu, and X. Duan, Chem. Soc. Rev. 44, 8859 (2015).

    Article  Google Scholar 

  66. D. G. Kvashnin and L. A. Chernozatonskii, JETP Lett. 105, 250 (2017).

    Article  Google Scholar 

  67. R. T. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, Acc.Chem. Res. 48, 56 (2015).

    Article  Google Scholar 

  68. A. Kumar and P. K. Eur. Ahluwalia, Phys. J. B 85, 186 (2012).

    Google Scholar 

  69. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).

    Article  Google Scholar 

  70. H. L. Zhuang and R. G. Hennig, J. Phys. Chem. C 117, 20440 (2013).

    Article  Google Scholar 

  71. M. K. Agarwal and M. J. Capers, J. Appl. Cryst. 5, 63 (1972).

    Article  Google Scholar 

  72. W. T. J. Hicks, Electrochem. Soc. 9, 1058 (1964).

    Article  Google Scholar 

  73. W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 033305 (2012).

    Article  Google Scholar 

  74. A. A. Opalovskii and V. E. Fedorov, Rus. Chem. Rev. 35, 186–204 (1966).

    Article  Google Scholar 

  75. Harold Schafer, Chemische Transportreaktionen (Verlag Chemie GmbH, Weinheim/Bergstr., 1961).

    Google Scholar 

  76. L. H. Brixner, J. Inorg. Nucl. Chem. 24, 257 (1962).

    Article  Google Scholar 

  77. G. Z. Magda, J. Petö, G. Dobrik, C. Hwang, L. P. Biró, and L. Tapasztó, Sci. Rep. 5, 14714 (2015).

    Article  Google Scholar 

  78. H. Hakkinen, Nature Chem. 4, 443 (2012).

    Article  Google Scholar 

  79. S. Lebègue and O. Eriksson, Phys. Rev. B 79 115409 (2009).

    Article  Google Scholar 

  80. A. Kuc, N. Zibouche, and T. Heine, Phys. Rev. B 83, 245213 (2011).

    Article  Google Scholar 

  81. J. Heising and M. G. Kanatzidis, J. Am. Chem. Soc. 121, 638 (1999).

    Article  Google Scholar 

  82. S. Jeong, D. Yoo, M. Ahn, P. Miroґ, T. Heine, and J. Cheon, Nature Commun. 6, 5763 (2015).

    Article  Google Scholar 

  83. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  Google Scholar 

  84. W. Zhang, Z. Huang, W. Zhang, and Y. Li, Nano Res. 7, 1731 (2014).

    Article  Google Scholar 

  85. J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, and T. Takenobu, Nano Lett. 12, 4013 (2012).

    Article  Google Scholar 

  86. X. Li and H. Zhu, J. Materiomics 1, 33–44 (2015).

  87. Y. Zhan, Z. Liu, S. Najmaei, M. Pulickel, and P. M. Ajayan, J. Lou, Small 8, 966 (2012).

    Article  Google Scholar 

  88. K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.‑T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, Lett. Nano Lett. 12, 1538 (2012).

    Article  Google Scholar 

  89. Y. Shi, W. Zhou, A. -Y. Lu, W. Fang, Y.-H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L.‑J. Li, and J.-C. Idrobo, J. Kong, Nano Lett. 12, 2784 (2012).

    Article  Google Scholar 

  90. Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.‑H. Lee, C.-T. Chi-Te Liang, C.-W. Chud, L.-J. Li, Nanoscale 4, 6637 (2012).

    Article  Google Scholar 

  91. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep. 3, 1866 (2013).

    Article  Google Scholar 

  92. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, and J. Lou, Nat. Mater. 12, 754 (2013).

    Article  Google Scholar 

  93. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, A. David, D. A. Muller, and J. C. Hone, Nat. Mater, 12, 554 (2013).

    Article  Google Scholar 

  94. Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, Nano Lett. 13, 3870 (2013).

    Article  Google Scholar 

  95. K. M. McCreary, A. T. Hanbicki, J. T. Robinson, Cobas E. Enrique, J. C. Culbertson, A. L. Friedman, G. G. Jernigan, and B. J. Jonker, Funct. Mater. 24, 6449 (2014).

    Article  Google Scholar 

  96. Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. H. Lee, G. Sun, L. Calderin, P. N. Browning, M. S. Bresnehan, M. J. Kim, T. S. Mayer, M. Terrones, and J. A. Robinson, ACS Nano 8, 3715 (2014).

    Article  Google Scholar 

  97. C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpsond, and D. W. Hewaka, Nanoscale 6, 12792–12797 (2014). https://doi.org/10.1039/c4nr04228

  98. S. H. Baek, Y. Choi, and W. Choi, Nanoscale Research Lett. 10, 388 (2015).

    Article  Google Scholar 

  99. Nihan Kosku Perkgoz, Anadolu Univ. J. Sci. Technol. A- Applied Sci. Eng. 18, 375 (2017).

    Google Scholar 

  100. X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, and P. M. Ajayan, ASC Nano 8, 5125–5131 (2014). https://doi.org/10.1021/nn501175k

    Article  Google Scholar 

  101. J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Yu. Huang, and X. Duan, Nano Res. 7, 511 (2014). https://doi.org/10.1007/s12274-014-0417-z

    Article  Google Scholar 

  102. N. D. Boscher, C. J. Carmalt, R. G. Palgrave, J. J. Gil-Tomas, and I. P. Parkin, Chem. Vap. Deposition 12, 692 (2006).

    Article  Google Scholar 

  103. C. J. Carmalt, I. P. Parkin, and E. S. Peters, Polyhedron 22, 1499 (2003).

    Article  Google Scholar 

  104. A. L. Elıas, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urıas, H. Terrones, and M. Mauricio Terrones, ACS Nano 7, 5235 (2013).

  105. X. Wang, L. Huang, X.-W. Jiang, Y. Li, Z. Wei, and J. Li, J. Mater. Chem. C 4, 3143 (2016).

    Article  Google Scholar 

  106. Y. Zhu, X. Wang, M. Zhang, C. Cai, and L. Xie, Nano Res. (2016). Just Accepted Manuscript. https://doi.org/10.1007/s12274-016-1178-7

  107. M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui, J. Zhang, C. Cai, and L. Xie, J. Am. Chem. Soc. 137, 7051–7054 (2015). https://doi.org/10.1021/jacs.5bp3807

    Article  Google Scholar 

  108. D. Wang, X. Zhang, H. Liu, J. Meng, J. Xia, Z. Yin, Y. Wang, J. You, and X.-M. Meng, 2D Mater. 4, 031012 (2017).

  109. X. He, F. Liu, P. Hu, W. Fu, X. Wang, Q. Zeng, W. Zhao, and Liu Z. Zheng, Small 10, 5423–5429 (2015). https://doi.org/10.1002/smll.201501488

  110. J. Gao, L. Li, J. Tan, H. Sun, B. Li, J. C. Idrobo, C. V. Singh, T.-M. Lu, and N. Koratkar, Nano Lett. 16, 3780–3787 (2016). https://doi.org/10.1021/acs.nanolett.6bo1180

    Article  Google Scholar 

  111. F. Cui, C. Wang, X. Li, G. Wang, K. Liu, Z. Yang, Q. Feng, X. Liang, Z. Zhang, S. Liu, Z. Lei, Z. Liu, H. Xu, and J. Zhang, Adv. Mater. 28 (25) (2016). https://doi.org/10.1002/adma.201600722

  112. K. Keyshar, Y. Gong, G. Ye, G. Brunetto, W. Zhou, D. P. Cole, K. Hackenberg, Y. He, L. Machado, M. Kabbani, A. H. C. Hart, B. Li, D. S. Galvao, A. George, R. Vajtai, C. S. Tiwary, and P. M. Ajayan, Adv. Mater. 27, 4640 (2015).

    Article  Google Scholar 

  113. E. S. Peters, C. J. Carmalt, and I. P. Parkin, J. Mater. Chem. 14, 3474 (2004).

    Article  Google Scholar 

  114. J. Yuan, J. Wu, W. J. Hardy, P. Loya, M. Lou, Y. Yang, S. Najmaei, M. Jiang, F. Qin, K. Keyshar, H. Ji, W. Gao, J. Bao, J. Kono, D. Natelson, and P. M. Ajayan, J. Adv. Lou. Mater. 27, 5605 (2015).

    Article  Google Scholar 

  115. J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, J. Am. Chem. Soc. 133, 17832 (2011).

    Article  Google Scholar 

  116. Z. Zhang, J. Niu, P. Yang, Y. Gong, Q. Ji, J. Shi, Q. Fang, S. Jiang, H. Li, X. Zhou, L. Gu, X. Wu, and Y. Zhang, Adv. Mater. 29 1702359 (2017).

    Article  Google Scholar 

  117. T. A. Empante, Y. Zhou, V. Klee, A. E. Nguyen, I.‑H. Lu, M. D. Valentin, S. A. N. Alvillar, E. Preciado, A. J. Berges, C. S. Merida, M. Gomez, S. Bobek, M. Isarraraz, E. J. Reed, L. Bartels, ACS Nano 11, 900 (2017).

    Article  Google Scholar 

  118. Z. Zhou, F. Liu, J. Lin, X. Huang, J. Xia, B. Zhang, Q. Zeng, H. Wang, C. Zhu, L. Niu, X. Wang, W. Fu, P. Yu, T.-R. Chang, C.-H. Hsu, D. Wu, H.-T. Jeng, Y. Huang, H. Lin, Z. Shen, C. Yang, L. Lu, K. Suenaga, W. Zhou, S. T. Pantelides, G. Liu, and Z. Liu, Adv. Mater. 29 (3), Jan. (2017). https://doi.org/10.1002/adma.201603471

  119. J.-H. Huang, K.-Y. Deng, P.-S. Liu, C.-T. Wu, C.‑T. Chou, W.-H. Chang, Y.-J. Lee, T.-H. Hou, Adv. Mater. Interfaces 4, 1700157 (2017).

    Article  Google Scholar 

  120. D. H. Keum, S. Cho, J. H. Kim, D.-H. Choe, H.‑J. Sung, M. Kan, H. Kang, J.-Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, Y. H. Lee, Nat. Phys. 11, 482–486 (2015). https://doi.org/10.1038/NPHYS3314

    Article  Google Scholar 

  121. L. Wang, I. Gutieґrrez-Lezama, C. Barreteau, N. Ubrig, T. Giannini, and A. F. Morpurgo, Nat. Commun. 6, 8892 (2015). https://doi.org/10.1038/ncomms989

    Article  Google Scholar 

  122. Y. Wang, Z. Sofer, J. Luxa, and M. Pumera, Adv. Mater. Interfaces, No. 3, (2016). https://doi.org/10.1002/admi.201600433

  123. Y. Huan, J. Shi, X. Zou, Y. Gong, Z. Zhang, M. Li, L. Zhao, R. Xu, S. Jiang, X. Zhou, M. Hong, C. Xie, LiH. He, X. Lang, Q. Zhang, L. Gu, X. Yan, and Y. Zhang, Adv. Mater. 30 (15), e1705916 (2018). https://doi.org/10.1002/adma.201705916

    Article  Google Scholar 

  124. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and Zhang H. Hua, Angew. Chem. Int. Ed. 50, 11093 (2011).

    Article  Google Scholar 

  125. Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng, and H. Zhang, Angew. Chem. Int. Ed. 51, 1 (2012).

    Article  Google Scholar 

  126. Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.-Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, Hai-TaoYang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H.-J. Gao, Nano Lett. 15, 4013 (2015). https://doi.org/10.1021/acs.nanolett.5b00964

    Article  Google Scholar 

  127. Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, Adv. Mater. 28, 2399 (2016).

    Article  Google Scholar 

  128. K. Xu, Y. Huang, B. Y. Chen, W. Lei, Z. Wang, Q. Wang, F. Wang, L. Yin, and J. He, Small 12, 3106 (2016).

    Article  Google Scholar 

  129. K. E. Aretouli, P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, E. Xenogiannopoulou, S. A. Giamini, E. Vassalou, N. Kelaidis, and A. Dimoulas, Appl. Phys. Lett. 106, 143105 (2015).

    Article  Google Scholar 

  130. P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, K. E. Aretouli, E. Xenogiannopoulou, E. Vassalou, G. Kordas, and A. Dimoulas, Microelectron. Eng. 147, 269 (2015).

    Article  Google Scholar 

  131. B. Zheng, Y. Chen, Z. Wang, F. Qi, Z. Huang, X. Hao, P. Li, W. Zhang, and Y. Li, 2D Mater. 3, 035024 (2016).

  132. S. Aminalragia-Giamini, J. Marquez-Velasco, P. Tsipas, D. Tsoutsou, G. Renaud, and A. Dimoulas, 2D Mater. 4, 015001 (2017).

  133. S. Zhao, T. Hotta, T. Koretsune, K. Watanabe, T. Taniguchi, K. Sugawara, T. Takahashi, H. Shinohara, and R. Kitaura, 2D Mater. 3, 025027 (2016).

  134. H. Wang, X. Huang, J. Lin, J. Cui, Y. Chen, C. Zhu, F. Liu, Q. Zeng, J. Zhou, P. Yu, X. Wang, H. He, S. H. Tsang, W. Gao, K. Suenaga, F. Ma, C. Yang, L. Lu, T. Yu, E. H. T. Teo, G. Liu, and Z. Liu, Nat. Commun. 8, 394 (2017). https://doi.org/10.1038/s41467-017-00427-5

    Article  Google Scholar 

  135. S. Onishi, M. M. Ugeda, Y. Zhang, Y. Chen, H. Ryu, C. Ojeda-Aristizabal, S.-K. Mo, Z. Hussain, Z.‑X. Shen, M. F. Crommie, and A. Zettl, Phys. Status Solidi B 253, 2396 ̶ 2399 (2016).

  136. Y. Nakata, K. Sugawara, S. Ichinokura, Y. Okada, T. Hitosugi, T. Koretsune, K. Ueno, S. Hasegawa, T. Takahashi, and Sato T. Takafumi, 2D Mater. & Appl., No. 12 (2018).

  137. J. Dong, C. Li, J. Yang, B. Chen, H. Song, J. Chen, and W. Peng, Cryst. Res. Technol. 51, 671 (2016).

    Article  Google Scholar 

  138. J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo, Z. Li, Y. Lin, K. Ruan, Wu C. Changzheng, and Y. Xie, J. Am. Chem. Soc. 140, 493 (2018). https://doi.org/10.1021/jacs.7b11915.

  139. R. Zhao, B. Grisafe, R. K. Ghosh, S. Holoviak, B. Wang, K. Wang, N. Briggs, A. Haque, S. Datta, and S. J. Robinson, 2D Mater 5 (2), (2018). https://doi.org/10.1088/2053-1583/aaa104

  140. D. Tsoutsou, K. E. Aretouli, P. Tsipas, J. Marquez-Velasco, E. Xenogiannopoulou, N. Kelaidis, S. A. Giamini, and A. Dimoulas, ACS Appl. Mater. Interfaces, 8, 1836 (2016).

    Article  Google Scholar 

  141. G. Yin, H. Zhao, J. Feng, J. Sun, J. Yan, Z. Liu, S. Lin, and S. Liua (F), J. Mater. Chem. A, 6, 9132 ̶ 9138 (2018). https://doi.org/10.1039/C8TA01143E

  142. H. Wang, Y. Chen, M. Duchamp, Q. Zeng, X. Wang, S. H. Tsang, H. Li, L. Jing, T. Yu, E. H. T. Teo, and Z. Liu, Adv. Mater. 30, 1704382 (2018).

    Article  Google Scholar 

  143. P. Chen, W. W. Pai, Y.-H. Chan, A. Takayama, C.‑Z. Xu, A. Karn, S. Hasegawa, M. Y. Chou, S.‑K. Mo, A. V. Fedorov, and T.-C. Chiang, Nature Commun. 8, 516 (2017). https://doi.org/10.1038/s41467-017-00641-1

    Article  Google Scholar 

  144. M. Huifang, P. Chen, B. Li, J. Li, R. Ai, Z. Zhang, G. Sun, K. Yao, Z. Lin, B. Zhao, R. Wu, X. Tang, X. Duan, and X. Duan, Nano Lett. 18 (6), (2018). https://doi.org/10.1021/acs.nanolett.8b00583

  145. Z. Cai, B. Liu, X. Zou, and H.-M. Cheng, Chem. Rev. 118, 6091–6133 (2018). https://doi.org/10.1021/acs.chemrev.7b00536

    Article  Google Scholar 

  146. H. U. Kim, C. Ahn, G. Arabale, C. Lee, and T. Kim, ECS Trans. 58 (8), 47 (2013).

    Article  Google Scholar 

  147. M. H. Jeon, C. Ahn, H. U. Kim, K. N. Kim, T. Z. LiN, H. Qin, Y. Kim, S. Lee, T. Kim, and G. Y. Yeom, Nanotecnology 26, 355706 (2015).

    Article  Google Scholar 

  148. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C.-J. Kim, and Muller D. David, J. Park, Nature 520, 656 (2015).

    Article  Google Scholar 

  149. S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, ACS Nano 9, 2080 (2015).

    Article  Google Scholar 

  150. W. Huang, L. Can, H. Li, Y. Ma, and T. Zhai, Cryst. Eng. Comm. 18, 3968 (2016). https://doi.org/10.1039/C5CE01986A

    Article  Google Scholar 

  151. K. Xu, L. Yin, Y. Huang, T. A. Shifa, J. Chu, F. Wang, R. Cheng, Z. Wanga, and J. He, Nanoscale 8, 16802 (2016). https://doi.org/10.1039/C6NR05976G

    Article  Google Scholar 

  152. Y. Sun, S. Luo, X.-G. Zhao, K. Biswas, S.-L. Li, and L. Zhang, Nanoscale 10, 7991 (2018). https://doi.org/10.1039/C7NR09486H

    Article  Google Scholar 

  153. M. Wasala, H. I. Sirikumara, Y. R. Sapkota, S. Hofer, D. Mazumdar, T. Jayasekera, and S. Talapatra, J. Mater. Chem. C 5, 11214 ̶ 11225 (2017). https://doi.org/10.1039/C7TC02866K

  154. Y. Wang, Y. Li, and Z. Chen, J. Mater. Chem. C 3, 9603 (2015). https://doi.org/10.1039/C5TC01345C

    Article  Google Scholar 

  155. P. Miro, M. Audiffred, and T. Heine, Chem. Soc. Rev. 43, 6537 (2014).

    Article  Google Scholar 

  156. Z. Sun, H. Lv, Z. Zhuo, A. Jalil, W. Zhang, X. Wu, and J. Yang, J. Mater. Chem. C (2018). https://doi.org/10.1039/C7TC95303G

  157. P. Miro, M. Ghorbani-Asl, and T. Heine, Angew. Chem., Int. Ed. Engl. 53, 3015 (2014).

    Article  Google Scholar 

  158. J. R. Brent, D. J. Lewis, T. Lorenz, E. A. Lewis, N. Savjani, S. J. Haigh, G. Seifert, B. Derby, and P. O’Brien, J. Am. Chem. Soc. 137, 12689 (2015).

    Article  Google Scholar 

  159. Y. Huang, L. Li, Y. Lin, and G.-W. Nan, J. Phys. Chem. C 121 (32), 17530 ̶17537 (2017). https://doi.org/10.1021/acs.jpcc.7b06096

  160. W. Wan, C. Liu, W. Xiao, and Y. Yao, Appl. Phys. Lett. 111, 132904 (2017).

    Article  Google Scholar 

  161. C. Chowdhury, S. Karmakar, and Datta A. Ayan, J. Phys. Chem. C 121, 7615 (2017). https://doi.org/10.1021/acs.jpcc.6b12080

    Article  Google Scholar 

  162. A. Shafique and Y.-H. Shin, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-00598-7

  163. V. E. Plushev, S. B. Stepina, and P. I. Fedorov, Chemistry and Technology of Rare and Scattered Elements (Vysshaya Shkola, Moscow, 1976), Part I.

  164. O. Madelung, Semiconductors: Data Handbook (Springer-Verlag, 2004).

    Book  Google Scholar 

  165. W. Huang, L. Gan, H. Li, Y. Ma, and T. Zhai, Cryst. Eng. Comm. 18, 3968 (2016). https://doi.org/10.1039/C5CE01986A

    Article  Google Scholar 

  166. K. Xu, L. Yin, Y. Huang, T. A. Shifa, J. Chu, F. Wang, R. Cheng, Z. Wanga, and J. He, Nanoscale 8, 16802 (2016). https://doi.org/10.1039/C6NR05976G

    Article  Google Scholar 

  167. V. Zolyomi, N. D. Drummond, and V. I. Fal’ko, Phys. Rev. 89, 205416 (2014).

    Article  Google Scholar 

  168. L. A. Burton, D. Colombara, R. D. Abellon, F. C. Grozema, L. M. Peter, T. J. Savenije, G. Dennler, and A. Walsh, Chem. Mater. 25, 4908 (2013).

    Article  Google Scholar 

  169. D. J. Lewis, P. Kevin, O. Bakr, C. A. Muryn, M. A. Malik, and P. O’Brien, Inorg. Chem. Front. 1, 577 (2014).

    Article  Google Scholar 

  170. I. Lefebvre and M. A. Szymanski, Phys. Rev. B 58, 1896 (1998).

    Article  Google Scholar 

  171. Y. Ma, Y. Dai, M. Guo, L. Yu, and B. Huang, Phys. Chem. Chem. Phys. 15, 8054 (2013). https://doi.org/10.1039/C3CP50233C

    Article  Google Scholar 

  172. P. Rai, S. Kaur, and S. Srivastava, Phys. B: Phys. Condens. Matter. 531, 90 (2018). https://doi.org/10.1016/j.physb.2017.12.023

    Article  Google Scholar 

  173. H. Park, H. Chung, and W. Kim, Mater. Lett. 99 172–175 (2013). https://doi.org/10.1016/j.matlet.2013.03.038i.

  174. T. Gao and T. Wang, Crystal Growth & Des. 10, 4995–5000 (2010).

    Article  Google Scholar 

  175. J. M. Galicia-Hernandez and A. Sanchez-Castilio, L. Morales De La Garza, and G. H. Cocoletzi, Bull. Mater. Sci. 40, 1111 (2017). https://doi.org/10.1007/s12034-017-1471-4

    Article  Google Scholar 

  176. K. Ramasamy, V. L. Kuznetsov, K. Gopal, M. A. Malik, J. Raftery, P. P. Edwards, and P. O’Brien, Chem. Mater. 25, 266 (2013).

    Article  Google Scholar 

  177. P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon, Adv. Energy Mater. 1, 1116 (2011).

    Article  Google Scholar 

  178. Dimitri D. Vaughn II, R. J. Patel, M. A. Hickner, and R. E. J. Schaak, Am. Chem. Soc. 132, 15170 (2010).

    Article  Google Scholar 

  179. A. Sánchez-Juárez, A. Tiburcio-Silverb, and A. Ortizc, Thin Solid Films 480–481, 452 ̶ 456 (2005).

  180. H. Peng, L. Jiang, J. Huang, and G. Li, J. Nanoparticle Res. 9, 1163–1166 (2007).

    Article  Google Scholar 

  181. L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, and Q. Wang, J. Am. Chem. Soc. 135, 1213 (2013).

    Article  Google Scholar 

  182. Z.-G. Chen, X. Shi, L.-D. Zhao, and J. Zou, “High-performance SnSe thermoelectric materials: progress and future challenge,” Prog. Mater. Sci. 97, 283–346 (2018). https://doi.org/10.1016/j.pmatsci.2018.04.005

    Article  Google Scholar 

  183. Y. Su, M. A. Ebrish, E. J. Olson, and S. J. Koester, Appl. Phys. Lett. 103, 263104 (2013).

    Article  Google Scholar 

  184. K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin,Y. Zhon, X. Hu, W. Duan, Q. Zhang, L. Fu, Q.-K. Xue, X. Chen, and S.-H. Ji, Science 353 (6296), 274–278 (2016).

    Article  Google Scholar 

  185. B. J. Carey, J. Z. Ou, R. M. Clark, K. J. Berean, A. Zavabeti, A. S. R. Chesman, S. P. Russo, D. W. M. Lau, Z.-Q. Xu, Q. Bao, O. Kevehei, B. C. Gibson, M. D. Dickey, R. B. Kaner, T. Daeneke, and K. Kalantar-Zadeh, Nature Commun. 8, 14482 (2017).

    Article  Google Scholar 

  186. X. Li, M.-W. Lin, A. A. Puretzky, J. C. Idrobo, C. Ma, M. Chi, M. Yoon, C. M. Rouleau, I. I. Kravchenko, D. B. Geohegan, and K. Xiao, Sci. Rep. 4, 5497 (2014).

    Article  Google Scholar 

  187. C. Li, L. Huang, G. P. Snigdha, Y. Yu, and L. Cao, ACS Nano 6, 8868 (2012). https://doi.org/10.1021/nn303745e

    Article  Google Scholar 

  188. B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, ACS Appl. Mater. Interfaces 5, 9594–9604 (2013).

  189. Wang R., Zhang W., Momand J., Ronneberger I., J. E. Boschker, R. Mazzarello, B. J. Kooi, H. Riechert, M. Wuttig, and R. Calarco, NPG Asia Mater. 9 (6), e396 (2017).

    Article  Google Scholar 

  190. J. Momand, J. E. Boschker, R. Wang, R. Calarco, and B. J. Kooi, Cryst. Eng. Commun. 20, 340–347 (2018).

    Article  Google Scholar 

  191. Y. Xu, W. Zhao, R. Xu, Y. Shi, and B. Zhang, Chem. Commun. 49, 9803–9805 (2013). https://doi.org/10.1039/c3cc46342g

  192. T. Gao and T. Wang, Crystal Growth & Des. 10, 4995–5000 (2010).

    Article  Google Scholar 

  193. A. C. Dhanya, K. C. Preetha, K. Deepa, and T. L. Remadev, IOP Conf. Ser.: Mater. Sci. & Engineering 73, 012009 (2015).

  194. S. Yang and D. F. Kelley, J. Phys. Chem. B 109, 12701–12709 (2005).

    Article  Google Scholar 

  195. Y. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis, and J. Q. Xiao, J. Am. Chem. Soc. 126, 6874 (2004).

    Article  Google Scholar 

  196. M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng, and Liu Z. Zhongfan, J. Am. Chem. Soc. 135, 13274 (2013).

    Article  Google Scholar 

  197. S. Acharya, M. Dutta, S. Sarkar, D. Basak, S. Chakraborty, and S. P. Pradhan, Chem. Mater. 24, 1779 (2012).

    Article  Google Scholar 

  198. W. Du, J. Zhu, S. Li, and X. Qian, Crystal Growth & Des. 8, 2130–2136 (2008).

    Article  Google Scholar 

  199. W. Huang, L. Gan, H. Yang, N. Zhou, R. Wang, W. Wu, H. Li, Y. Ma, H. Zeng, and T. Zhai, Adv. Funct. Mater. 27, 1702448 (2017).

    Article  Google Scholar 

  200. C. Kamal, A. Chakrabarti, and M. Ezawa, Phys. Rev. 93, 125428 (2016).

    Article  Google Scholar 

  201. G. Almeida, S. Dogan, G. Bertoni, C. Giannini, R. Gaspari, S. Perissinotto, R. Krahne, S. Ghosh, and L. Manna, J. Am. Chem. Soc. 139, 3005 (2017).

    Article  Google Scholar 

  202. P. Pistor, J. M. M. Alvarez, M Leon, M Di Michiel, S. Schorr, R Klenk, and S. Lehmann, Acta Crystallogr., B 72, 410 (2016).

    Article  Google Scholar 

  203. V. N. Tuoc and T. D. Huan, J. Phys. Chem. C 122, 17067 (2018). https://doi.org/10.1021/acs.jpcc.8b04328

    Article  Google Scholar 

  204. H. Behera and G. Mukhopadhyay, Submitted on 24 Jan. 2014; arXiv:1305.6895v2

  205. Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu, S. Wei, and Y. Xie, Nature Commun. 3, 1057 (2012).https://doi.org/10.1038/ncomms2066

  206. B. S. Rao, B. R. Kumar, G. V. Chalapathi, V. R. Reddy, and T. S. Rao, J. Nano-Electron. Phys. 3, 620–625 (2011).

    Google Scholar 

  207. J. M. Skelton, L. A. Burton, F. Oba, and A. Walsh, APL Mater. 5, 036101 (2017).

    Article  Google Scholar 

  208. E. Finkman and B. Fisher, Solid State Commun. 50 (l), 25–28 (1984).

    Article  Google Scholar 

  209. J. O. Island, M. Barawi, R. Biele, A. Almazán, J. M. Clamagirand, J. R. Ares, C. Sánchez, S. J. Herre, Álvarez J. V. van der Zant, R. D’Agosta, I. J. Ferrer, and A. Castellanos-Gomez, Adv. Mater. 27, 2595 (2015).

    Article  Google Scholar 

  210. J. Dai, M. Li, and X. C. Zeng, WIREs Comput. Mol. Sci. 6, 211–222 (2016).

    Article  Google Scholar 

  211. M. Li, J. Dai, and X. C. Zeng, Nanoscale 7, 15385 (2015).

    Article  Google Scholar 

  212. Y. Jin, X. Li, and J. Yang, Phys. Chem. Chem. Phys. 17, 18665 (2015). https://doi.org/10.1039/c5cp02813b

    Article  Google Scholar 

  213. T. Förster, P. Krüger, and M. Rohlfin, Phys. Rev. B 93, 205442 (2016).

    Article  Google Scholar 

  214. J. Betancourt, S. Li, X. Dang, J. D. Burton, E. Y. Tsymbal, and J. P. Velev, J. Phys.: Condens. Matter. 28 395501 (2016).

    Google Scholar 

  215. A. Arabzadeh and A. Salimi, Electroanalysis 29, 2027 (2017). https://doi.org/10.1002/elan.201600808

    Article  Google Scholar 

  216. B. Y. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn, Phys. Rev. 84, 165208 (2011).

    Article  Google Scholar 

  217. Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, J. Phys. Chem. B 110, 13415 (2006).

    Article  Google Scholar 

  218. J. Yao, K. J. Koski, W. Luo, J. J. Cha, L. Hu, D. Kong, V. K. Narasimhan, K. Huo, and Y. Cui, Nature Commun. 5, 5670 (2014).

    Article  Google Scholar 

  219. J. Ma, J.-P. Zhou, J. Yang, H.-S. Zhao, X.-M. Chen, and C.-Y. Deng, AIP Advan. 5, 067133 (2015).

    Article  Google Scholar 

  220. Y. Li, J. Zhang, G. Zheng, Y. Sun, S. S. Hong, F. Xiong, S. Wang, H. R. Lee, and Y. Cui, ACS Nano 9, 10916–10921 (2015).

    Article  Google Scholar 

  221. C. Tan, Q. Wang, and X. Fu, Opt. Mater. Exp. 4 (10), (2016). https://doi.org/10.1364/ome.4.002016

  222. C. Zheng, L. Yu, L. Zhu, J. L. Collins, D. Kim, Y. Lou, C. Xu, M. Li, Z. Wei, Y. Zhang, M. T. Edmonds, S. Li, J. Seide, Y. Zhu, J. Z. Liu, W.-X. Tang, and M. S. Fuhrer, Sci. Adv. 4, eaar7720 (2018).

  223. X. Tao and Y. Gu, Nano Lett. 13, 3501 (2013).

    Article  Google Scholar 

  224. J. Zhou, Q. Zeng, D. Lv, L. Sun, L. Niu, W. Fu, F. Liu, Z. Shen, C. Jin, and Z. Liu, Nano Lett. 15, 6400–6405 (2015). https://doi.org/10.1021/acs.nanolett.5b01590

  225. S. A. Manolache and A. Duta, Romanian J. Inf. Sci. & Technol. 11, 109 (2008).

    Google Scholar 

  226. Electronic Properties of Inorganic Quasi-one-Dimensional Compounds, Ed. P. Monceau (Springer-Science+Business Media, 1985), Vol. V.

  227. V. E. Fedorov, S. B. Artemkina, E. D. Grayfer, N. G. Naumov, Y. V. Mironov, A. I. Bulavchenko, V. I. Zaikovskii, I. V. Antonova, A. I. Komonov, and M. V. Medvedev. J. Mater. Chem. C 2, 5479 (2014).

    Article  Google Scholar 

  228. W. Yu, Z. Zhu, C.-Y. Niu, X. Cai, and W.-B. Zhang, (2016). arXiv:1510.04108v5 [physics.comp-ph].

  229. L. Kou, Y. Ma, X. Tan, T. Frauenheim, A. Du, and S. Smith, J. Phys. Chem. C 119, 6918–6922 (2015). https://doi.org/10.1021/acs.jpcc.5b02096

    Article  Google Scholar 

  230. S. Singh and A. H. Romero, Phys. Rev. B 95, 165444 (2017).

    Article  Google Scholar 

  231. S. B. Pillai, S. D. Dabhi, S. Narayan, and P. K. Jha, AIP Conf. Proc. 1942, 090022 (2018).

    Article  Google Scholar 

  232. M. S. Prete, A. M. Conte, P. Gori, F. Bechstedt, and O. Pulci, Appl. Phys. Lett. 110, 012103 (2017).

    Article  Google Scholar 

  233. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 (2009).

    Article  Google Scholar 

  234. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, Phys. Rev. B 51, 4606 (1995).

    Article  Google Scholar 

  235. G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, Semiconduc. & Semimetals, 95, 101 (2016).

    Article  Google Scholar 

  236. P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou, E. Golias, S. A. Giamini, C. Grazianetti, D. Chiappe, A. Molle, M. Fanciulli, and A. Dimoulas, Appl. Phys. Lett. 103, 251605 (2013). https://doi/org/10.1063/1.4851239

    Article  Google Scholar 

  237. Z. Y. Al Balushi, K. Wang, R. K. Ghosh, R. A. Vilá, S. M. Eichfeld, J. D. Caldwell, X. Qin, Yu-C. Lin, P. A. DeSario, G. Stone, S. Subramanian, D. F. Paul, R. M. Wallace, S. Datta, M. Joan, J. M. Redwing, and J. A. Robinson, Nature Mater. Lett. 15, 1166–1171 (2016), https://doi.org/10.1038/nmat4742

    Article  Google Scholar 

  238. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, ACS Nano 8, 4033–4041 (2014).

  239. J. Guan, Z. Zhu, and D. Tománek, Phys. Rev. Lett. 113, 046804 (2014).

    Article  Google Scholar 

  240. M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J. M. Mroczkowska, G. Sumanasekera, and J. B. Jasinski, 2D Mater. & Appl. 1, 1 (2017). https://doi.org/10.1038/s41699-017-0007-5

    Article  Google Scholar 

  241. B. Sa, Y. Li, J. Qi, R. Ahuja, and Z. Sun, J. Phys. Chem. C 118, 26560–26568 (2014). https://doi.org/10.1021/jp508618t

    Article  Google Scholar 

  242. K. Ding, L. Wen, S. Huang, Y. Li, Y. Zhang, and Y. Lu, RSC Adv. 6, 80872 (2016). https://doi/org/10.1039/c6ra10907a

  243. Z. Zhu and D. Tomanek, Phys. Rev. Lett. 112, 176802 (2014).

    Article  Google Scholar 

  244. M. Wu, H. Fu, L. Zhou, K. Yao, and X. C. Zeng, Nano Lett. 15, 3557–3562 (2015). https://doi/org/10.1021/acs.nanolett.5b01041

  245. W. H. Han, S. Kim, In-Ho. Lee, and K. J. Chang, J. Phys. Chem. Lett. 8, 4627 (2017).

    Article  Google Scholar 

  246. S. Kaur, A. Kumar, S. Srivastava, K. Tankeshwar, and R. Pandey, J. Phys. Chem. C 122 (45), 26032–26038 (2018). https://doi/org/10.1021/acs.jpcc.8b08566

  247. T. Zhao, C. Y. He, S. Y. Ma, K. W. Zhang, X. Y. Peng, G. F. Xie, and J. X. Zhong, J. Phys.: Condens. Matter. 27, 265301 (2015). https://doi.org/10.1088/0953-8984/27/26/265301

    Article  Google Scholar 

  248. G. Schusteritsch, M. Uhrin, and C. J. Pickard, Nano Lett. 16, 2975–2980 (2016). https://doi.org/10.1021/acs.nanolett.5b05068

  249. H. Wang, X. Li, Z. Liu, and J. Yang, Phys. Chem. Chem. Phys. 19, 2402–2408 (2017).

    Article  Google Scholar 

  250. P. Li and W. Luo, Sci. Rep. 6, 25423 (2016). https://doi.org/10.1038/srep25423

    Article  Google Scholar 

  251. M. Xu, C. He, C. Zhang, C. Tang, and J. Zhong, Phys. Status Solidi RRL 10, 563 (2016). https://doi.org/10.1002/pssr.201600085

    Article  Google Scholar 

  252. M. Qiu, Z. T. Sun, D. K. Sang, X. G. Han, H. Zhang, and C. M. Niu, Nanoscale 9, 13384–13403 (2017).

    Article  Google Scholar 

  253. J. L. Zhang, S. Zhao, C. Han, Z. Wang, S. Zhong, S. Sun, R. Guo, X. Zhou, C. Gu, K. Yuan, Z. Li, and W. Chen, Nano Lett. 16, 4903–4908 (2016). https://doi.org/10.1021/acs.nanolett.6b01459

    Article  Google Scholar 

  254. W. Zhang, H. Enriquez, Y. Tong, A. Bendounan, A. Kara, A. P. Seitsonen, A. J. Mayne, G. Dujardin, and H. Oughaddou, Small 14, 1804066 (2018). https://doi.org/10.1002/smll.201804066

    Article  Google Scholar 

  255. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446 (7131), 60–63 (2007). https://doi.org/10.1038/nature05545

  256. J. C. Garcia, D. B. De Lima, L. V. C. Assali, and J. F. Justo, J. Phys. Chem. C 115, 13242–13246 (2011).

    Article  Google Scholar 

  257. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Chem. Commun. 46, 3256–3258 (2010)

    Article  Google Scholar 

  258. J. Kang, J. Li, F. Wu, S.-S. Li, and J.-B. Xia, J. Phys. Chem. C 115, 20466–20470 (2011).

    Article  Google Scholar 

  259. X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.‑R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).

    Article  Google Scholar 

  260. E. Perim, R. Paupitz, P. A. S. Autreto, and D. S. Galvao, J. Phys. Chem. C 118, 23670–23674 (2014).

    Article  Google Scholar 

  261. P. A.Denis, J. Phys. Chem. C 118, 24976–24982 (2014).

    Article  Google Scholar 

  262. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).

    Article  Google Scholar 

  263. C. Grazianetti, E. Cinquantaand, and A. Molle, 2D Mater. 3, 012001 (2016). https://doi.org/10.1088/2053-1583/3/1/012001

  264. C.-C. Liu, H. Jiang, and Yao Y. Yugui, Phys. Rev. B 84, 195430 (2011).

    Article  Google Scholar 

  265. P. Rivero, J.-A. Yan, V. M. Garcia-Suarez, J. Ferrer, and S. Barraza-Lope, Phys. Rev. B 90, 241408(R) (2014).

  266. H. Zhao, C.-W. Zhang, W.-X. Ji, R.-W. Zhang, S.‑S. Li, S.-S. Yan, B.-M. Zhang, L. P. Ping, and P. J. Wang, Sci. Rep. 6, 20152 (2016). https://doi/org/10.1038/srep20152

  267. G. Wang, R. Pandey, and S. P. Karna, ACS Appl. Mater. Interfaces 7, 11490 ̶ 11496 (2015). https://doi.org/10.1021/acsami.5b02441

  268. C. Kamal and M. Ezawa, Phys. Rev. B 91, 085423 (2015).

    Article  Google Scholar 

  269. E. Akturk, O. U. Aktürk, and S. Ciraci, Phys. Rev. B 94, 014115 (2016).

    Article  Google Scholar 

  270. J. Lee, W.-C. Tian, W.-L. Wang, and D.-X. Yao, Sci. Rep., 5, 11512 (2015). https://doi.org/10.1038/srep11512

    Article  Google Scholar 

  271. W. Lin, J. Li, W. Wang, S.-D. Liang, and D.-X. Yao, Sci. Rep. 8, 1674 (2018). https://doi.org/10.1038/s41598-018-19496-7

  272. J.-S. Li and W.-L. Wang, Sci. Rep. 6, 34177 (2016). https://doi.org/10.1038/srep34177

    Article  Google Scholar 

  273. A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko, Nature 457, 863–867 (2009).

    Article  Google Scholar 

  274. L. Adamska, S. Sadasivam, J. J. Foley, P. Darancet, and S. Sharifzadeh, J. Phys. Chem. C 122, 4037–4045 (2018). https://doi.org/10.1021/acs.jpcc.7b10197

  275. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Nature Chem. 8, 563–568 (2016). https://doi.org/10.1038/nchem.2491

  276. B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. I. Iimor, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, and F. Komori, Phys. Rev. Lett. 118, 096401 (2017).

    Article  Google Scholar 

  277. W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, and K. Wu, Sci. Bull. 63, 282–286 (2018). https://doi.org/10.1016/j.scib.2018.02.006

  278. A. Lopez-Bezanilla and P. B. Littlewood, Phys. Rev. B 93, 241405(R) (2016).

  279. Z. Luo, X. Fan, and Y. An, Nanoscale Res. Lett. 12, 514 (2017). https://doi.org/10.1186/s11671-017-2282-7

    Article  Google Scholar 

  280. Z. Wang, T.-Y. Lu, H.-Q. Wang, Y. P. Feng, and J.‑C. Zheng, Sci. Rep. 7, 609 (2017). https://doi.org/10.1038/s41598-017-00667-x

    Article  Google Scholar 

  281. A. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Al-ducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Science, 350 (6267), 1513–1516 (2015).

    Article  Google Scholar 

  282. A. I. Khan, T. Chakraborty, N. Acharjee, and S. Subrina, Sci. Rep. 7, 16347 (2017). https://doi.org/10.1038/s41598-017-16650-5

    Article  Google Scholar 

  283. B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, J. Mater. Chem. C. 4, 8416–8421 (2016). https://doi.org/10.1039/c6tc00115g

  284. M. Pumera and Z. Sofer, Adv. Mater. 29, 1605299 (2017). https://doi.org/10.1002/adma.201605299

    Article  Google Scholar 

  285. F. A. Rasmussen and K. S. Thygesen, J. Phys. Chem. 119, 13169 (2015). https://doi.org/10.1021/acs.jpcc.5b02950

  286. X. Chen, Y. Zhou, Q. Liu, Z. Li, J. Liu, and Z. Zou, ACS Appl. Mater. Interfaces 4, 3372 (2012).

    Article  Google Scholar 

  287. N. Doudin, D. Kuhness, M. Blatnik, G. Barcaro, F. R. Negreiros, L. Sementa, A. Fortunelli, S. Surnev, and F. P. Netzer, J. Phys. Chem. C 120, 28682 (2016).

    Article  Google Scholar 

  288. M. B. Johansson, P. T. Kristiansen, L. Duda, G. A. Niklasson, and L. Österlund, J. Phys.: Condens. Matter. 28, 475802 (2016).

    Google Scholar 

  289. J. Wang and C.-J. Liu, Chem. Bio. Eng. Rev. 2, 335–350 (2015).

    Google Scholar 

  290. H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011).

    Article  Google Scholar 

  291. K. R. Locherer, I. P. Swainson, and E. K. H. Salje, J. Phys.: Condens. Matter 11, 4143 (1999).

    Google Scholar 

  292. A. Faudoa-Arzate, A. Arteaga-Duran, R. J. Saenz-Hernandez, M. E. Botello-Zubiate, P. R. Realyvazquez-Guevara, and J. A. Matutes-Aquino, Materials 10, 200 (2017). https://doi.org/10.3390/ma10020200

    Article  Google Scholar 

  293. M. B. Johansson, G. Baldissera, I. Valyukh, C. Persson, H. Arwin, G. A. Niklasson, and L. Osterlund, J. Phys.: Condens. Matter. 25, 205502 (2013).

    Google Scholar 

  294. P. M. Woodward, A. W. Sleight, and T. Vogt, J. Phys. Chem. Solids 56, 1305–1315 (1995).

    Article  Google Scholar 

  295. F. Wang, C. Di Valentin, and G. Pacchioni, J. Phys. Chem. C 115, 8345–8353 (2011).

    Article  Google Scholar 

  296. S. Guimond, D. Göbke, J. M. Sturm, Y. Romanyshyn, H. Kuhlenbeck, M. Cavalleri, and H.-J. Freund, J. Phys. Chem. C 117, 8746 (2013).

    Article  Google Scholar 

  297. A. J. Molina-Mendoza, J. I. Lado, J. O. Island, M. A. Niño, L. Aballe, M. Foerster, F. Y. Bruno, A. López-Moreno, L. Vaquero-Garzon, H. S. J. van der Zant, G. Rubio-Bollinger, N. Agrait, E. M. Pérez, J. Fernández-Rossier, and A. Castellanos-Gomez, Chem. Mater. 28, 4042 (2016). https://doi.org/10.1021/acs.chemmater.6b01505

    Article  Google Scholar 

  298. J. Chen and Q. Wei, Int. J. Appl. Ceram. Technol. 14, 1–6 (2017). https://doi.org/10.1111/ijac.12750

    Article  Google Scholar 

  299. J. V. B. Moura, J. V. Silveira, Filho J. G. Silva, Filho A. G. S. Souza, C. Luz-Lima, and P. T. C. Freire, Vibrational Spectroscopy 98, 128 (2018). https://doi.org/10.1016/j.vibspec.2018.07.008

    Article  Google Scholar 

  300. D. Yao, J. Z. Ou, K. Latham, S. Zhuiykov, A. P. O’Mullane, and K. Kalantar-zadeh, Cryst. Growth Des. 12, 1865 (2012).

    Article  Google Scholar 

  301. E. M. McCarron III and J. C. Calabrese, J. Sol. St. Chem, 91, 121 (1991).

    Article  Google Scholar 

  302. M. A. McGuire, Crystals 7, 121 (2017). https://doi.org/10.3390/cryst7050121

    Article  Google Scholar 

  303. S. Lebegue, T. Bjorkman, M. Klintenberg, R. M. Nieminen, and O. Eriksson, Phys. Rev. X 3, 031002 (2013).

    Google Scholar 

  304. J. Jiang, Q. Liang, R. Meng, Q. Yang, C. Tan, X. Sun, and X. Chen, Nanoscale 9, 2992 (2017). https://doi.org/10.1039/C6NR07231C

    Article  Google Scholar 

  305. J. L. Lado and J. Fernández-Rossier, 2D Mater. 4, 035 002 (2017).

  306. H. Wang, V. Eyert, and U. Schwingenschlogl, J. Phys. Condens. Matter. 23, 116003 (2011). https://doi.org/10.1088/0953-8984/23/11/116003

    Article  Google Scholar 

  307. W. Luo and H. Xiang, Nano Lett. 15, 3230 ̶ 3235 (2015). https://doi.org/10.1021/acs.nanolett.5b0041

  308. S. Merlino, L. Labella, F. Marchett, and S. Toscani, Chem. Mater. 16, 3895 (2004).

    Article  Google Scholar 

  309. M. Ashton, D. Gluhovic, S. B. Sinnott, J. Guo, D. A. Stewart, and R. G. Hennig, Nano Lett. 17, 5251 (2017). https://doi.org/10.1021/acs. nanolett.7b01367

  310. Y. Zhou, H. Lu, X. Zu, and Gao F. Fei, Sci. Rep. 6, 19407 (2016). https://doi.org/10.1038/srep19407

    Article  Google Scholar 

  311. M. A. McGuire, Yan J. Jiaqiang, P. Lampen-Kelley, A. F. May, V. R. Cooper, L. Lindsay, A. Puretzky, L. Liang, K. C. Santosh, E. Cakmak, S. Calder, and B. C. Sales, arXiv:, 02708v1 (2017).

  312. V. V. Kulish and Huang W. Wei, J. Mater. Chem. C 5, 8734–8741 (2017). https://doi/org/10.1039/C7TC02664A

  313. E. Torun, H. Sahin, S. K. Singh, and F. M. Peeters, Appl. Phys. Lett. 106, 192404 (2015). https://doi/org/10.1063/1.4921096

    Article  Google Scholar 

  314. S.-H. Zhang and B.-G. Liu, arXiv:, 08943v2 (2017).

  315. S. Maheshwari, T. J. Savenije, N. Renaud, and F. C. Grozema, J. Phys. Chem. C 122, 17118–17122 (2018). https://doi/org/10.1021/acs.jpcc.8b05715

    Article  Google Scholar 

  316. A. Bala, A. K. Deb, and V. Kumar, J. Phys. Chem. C 122, 7464 (2018). https://doi/org/10.1021/acs.jpcc.7b11322

    Article  Google Scholar 

  317. Nhat Pham Vu, Cuong Ngo Tuan, Duy Pham Khac, Nguyen Minh Tho, Chem. Phys. 400, 185–197 (2012).

Download references

Funding

The reported study was funded by Russian Foundation for Basic Research according to the research project no. 18-29-20080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ponomarenko.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, V.P., Popov, V.S., Popov, S.V. et al. Photo- and Nanoelectronics Based on Two-Dimensional Materials. Part I. Two-Dimensional Materials: Properties and Synthesis. J. Commun. Technol. Electron. 65, 1062–1104 (2020). https://doi.org/10.1134/S1064226920090090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920090090

Keywords:

Navigation