Skip to main content
Log in

Recent advances in anisotropic two-dimensional materials and device applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), black phosphorus (BP), MXene and borophene, have aroused extensive attention since the discovery of graphene in 2004. They have wide range of applications in many research fields, such as optoelectronic devices, energy storage, catalysis, owing to their striking physical and chemical properties. Among them, anisotropic 2D material is one kind of 2D materials that possess different properties along different directions caused by the intrinsic anisotropic atoms’ arrangement of the 2D materials, mainly including BP, borophene, low-symmetry TMDs (ReSe2 and ReS2) and group IV monochalcogenides (SnS, SnSe, GeS, and GeSe). Recently, a series of new devices has been fabricated based on these anisotropic 2D materials. In this review, we start from a brief introduction of the classifications, crystal structures, preparation techniques, stability, as well as the strategy to discriminate the anisotropic characteristics of 2D materials. Then, the recent advanced applications including electronic devices, optoelectronic devices, thermoelectric devices and nanomechanical devices based on the anisotropic 2D materials both in experiment and theory have been summarized. Finally, the current challenges and prospects in device designs, integration, mechanical analysis, and micro-/nano-fabrication techniques related to anisotropic 2D materials have been discussed. This review is aimed to give a generalized knowledge of anisotropic 2D materials and their current devices applications, and thus inspiring the exploration and development of other kinds of new anisotropic 2D materials and various novel device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Jiang, X. T.; Liu, S. X.; Liang, W. Y.; Luo, S. J.; He, Z. L.; Ge, Y. Q.; Wang, H. D.; Cao, R.; Zhang, F.; Wen, Q. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T=F, O, or OH). Laser Photonics Rev. 2018, 12, 1700229.

    Google Scholar 

  3. Ge, Y. Q.; Zhu, Z. F.; Xu, Y. H.; Chen, Y. X.; Chen, S.; Liang, Z. M.; Song, Y. F.; Zou, Y. S.; Zeng, H. B.; Xu, S. X. et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 2018, 6, 1701166.

    Google Scholar 

  4. Song, Y. F.; Liang, Z. M.; Jiang, X. T.; Chen, Y. X.; Li, Z. J.; Lu, L.; Ge, Y. Q.; Wang, K.; Zheng, J. L; Lu, S. B. et al. Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 2017, 4, 045010.

    Google Scholar 

  5. Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 2017, 7, 42357.

    CAS  Google Scholar 

  6. Guo, B.; Wang, S. H.; Wu, Z. X.; Wang, Z. X.; Wang, D. H.; Huang, H.; Zhang, F.; Ge, Y. Q.; Zhang, H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 2018, 26, 22750–22760.

    CAS  Google Scholar 

  7. Li, P. F.; Chen, Y.; Yang, T. S.; Wang, Z. Y.; Lin, H.; Xu, Y. H.; Li, L.; Mu, H. R.; Shivananju, B. N.; Zhang, Y. P. et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 2017, 9, 12759–12765.

    CAS  Google Scholar 

  8. Zheng, J. L.; Yang, Z. H.; Chen, S.; Liang, Z. M.; Chen, X.; Cao, R.; Guo, Z. N.; Wang, K.; Zhang, Y.; Ji, J. H. et al. Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability. ACS Photonics 2017, 4, 1466–1476.

    CAS  Google Scholar 

  9. Wang, Y. Z.; Huang, W. C.; Wang, C.; Guo, J.; Zhang, F.; Song, Y. F.; Ge, Y. Q.; Wu, L. M.; Liu, J.; Li, J. Q. et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 2019, 13, 1800313.

    Google Scholar 

  10. Wang, C.; Wang, Y. Z.; Jiang, X. T.; Xu, J. W.; Huang, W. C.; Zhang, F.; Liu, J. F.; Yang, F. M.; Song, Y. F.; Ge, Y. Q. et al. MXene Ti3C2Tx: A promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 2019, 7, 1900060.

    Google Scholar 

  11. Wang, Y. Z.; Zhang, F.; Tang, X.; Chen, X.; Chen, Y. X.; Huang, W. C.; Liang, Z. M.; Wu, L. M.; Ge, Y. Q.; Song, Y. F. et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 2018, 12, 1800016.

    Google Scholar 

  12. Zheng, J. L.; Tang, X.; Yang, Z. H.; Liang, Z. M.; Chen, Y. X.; Wang, K.; Song, Y. F.; Zhang, Y.; Ji, J. H.; Liu, Y. et al. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 2017, 5, 1700026.

    Google Scholar 

  13. Wu, L. M.; Huang, W. C.; Wang, Y. Z.; Zhao, J. L.; Ma, D. T.; Xiang, Y. J.; Li, J. Q.; Ponraj, J. S.; Dhanabalan, S. C.; Zhang, H. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 2019, 29, 1806346.

    Google Scholar 

  14. Wang, X. M.; Xia, F. N. Black phosphorus optoelectronics. In Proceedings of 2016 Conference on Lasers and Electro-Optics, San Jose, USA, 2016, pp. 1–2.

  15. Dhanabalan, S. C.; Ponraj, J. S.; Guo, Z. N.; Li, S. J.; Bao, Q. L.; Zhang, H. Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 2017, 4, 1600305.

    Google Scholar 

  16. Singh, E.; Singh, P.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061–11105.

    CAS  Google Scholar 

  17. Bablich, A.; Kataria, S.; Lemme, M. C. Graphene and two-dimensional materials for optoelectronic applications. Electronics 2016, 5, 13.

    Google Scholar 

  18. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 1158.

    Google Scholar 

  19. Yang, P. F.; Zhang, Z. P.; Sun, M. X.; Lin, F.; Cheng, T.; Shi, J. P.; Xie, C. Y.; Shi, Y. P.; Jiang, S. L.; Huan, Y. H. et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics. ACS Nano 2019, 13, 3649–3658.

    CAS  Google Scholar 

  20. Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

    CAS  Google Scholar 

  21. Haratipour, N.; Namgung, S.; Oh, S. H.; Koester, S. J. Fundamental limits on the subthreshold slope in schottky source/drain black phosphorus field-effect transistors. ACS Nano 2016, 10, 3791–3800.

    CAS  Google Scholar 

  22. Wang, Y. M.; Ding, K.; Sun, B. Q.; Lee, S. T.; Jie, J. S. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 2016, 9, 72–93.

    CAS  Google Scholar 

  23. Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572.

    Google Scholar 

  24. Xu, Y. J.; Yuan, J.; Zhang, K.; Hou, Y.; Sun, Q.; Yao, Y. M.; Li, S. J.; Bao, Q. L.; Zhang, H.; Zhang, Y. G. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 2017, 27, 1702211.

    Google Scholar 

  25. Dhanabalan, S. C.; Ponraj, J. S.; Guo, Z. N.; Li, S. J.; Bao, Q. L.; Zhang, H. Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 2017, 4, 1600305.

    Google Scholar 

  26. Zhang, Y. P.; Lim, C. K.; Dai, Z. G.; Yu, G. N.; Haus, J. W.; Zhang, H.; Prasad, P. N. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 2019, 795, 1–51.

    CAS  Google Scholar 

  27. Fei, R. X.; Faghaninia, A.; Soklaski, R.; Yan, J. A.; Lo, C.; Yang, L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 2014, 14, 6393–6399.

    CAS  Google Scholar 

  28. Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

    CAS  Google Scholar 

  29. Lee, M. J.; Ahn, J. H.; Sung, J. H.; Heo, H.; Jeon, S. G.; Lee, W.; Song, J. Y.; Hong, K. H.; Choi, B.; Lee, S. H. et al. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 2016, 7, 12011.

    CAS  Google Scholar 

  30. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    CAS  Google Scholar 

  31. Luo, B.; Wang, B.; Li, X. L.; Jia, Y. Y.; Liang, M. H.; Zhi, L. J. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538–3543.

    CAS  Google Scholar 

  32. Zhou, L.; Zhuang, Z. C.; Zhao, H. H.; Lin, M. T.; Zhao, D. Y.; Mai, L. Q. Intricate hollow structures: Controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29, 1602914.

    Google Scholar 

  33. Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

    Google Scholar 

  34. Qiu, M.; Sun, Z. T.; Sang, D. K.; Han, X. G.; Zhang, H.; Niu, C. M. Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 2017, 9, 13384–13403.

    CAS  Google Scholar 

  35. Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.

    Google Scholar 

  36. Li, Y.; Wang, R. H.; Guo, Z. N.; Xiao, Z.; Wang, H. D.; Luo, X. L.; Zhang, H. Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: Opportunities and challenges. J. Mater. Chem. A 2019, 7, 25227–25246.

    CAS  Google Scholar 

  37. Wang, R. H.; Li, X. H.; Wang, Z. X.; Zhang, H. Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: P-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 2017, 34, 131–140.

    CAS  Google Scholar 

  38. Ren, X. H.; Zhou, J.; Qi, X.; Liu, Y. D.; Huang, Z. Y.; Li, Z. J.; Ge, Y. Q.; Dhanabalan, S. C.; Ponraj, J. S.; Wang, S. Y. et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1700396.

    Google Scholar 

  39. Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2017, 5, 5207–5234.

    Google Scholar 

  40. Wang, H.; Jiang, S. L.; Shao, W.; Zhang, X. D.; Chen, S. H.; Sun, X. S.; Zhang, Q.; Luo, Y.; Xie, Y. Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc. 2018, 140, 3474–3480. ai[41]_Tan, X.; Tahini, H. A.; Smith, S. C. p-doped graphene/graphitic carbon nitride hybrid electrocatalysts: Unraveling charge transfer mechanisms for enhanced hydrogen evolution reaction performance. ACS Catal. 2016, 6, 7071–7077.

    CAS  Google Scholar 

  41. Sotelo-Vazquez, C.; Quesada-Cabrera, R.; Ling, M.; Scanlon, D. O.; Kafizas, A.; Thakur, P. K.; Lee, T. L.; Taylor, A.; Watson, G. W.; Palgrave, R. G. et al. Photocatalysis: Evidence and effect of photogenerated charge transfer for enhanced photocatalysis in WO3/TiO2 heterojunction films: A computational and experimental study. Adv. Funct. Mater. 2017, 27, 1605413.

    Google Scholar 

  42. Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

    CAS  Google Scholar 

  43. Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.

    CAS  Google Scholar 

  44. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    CAS  Google Scholar 

  45. Sun, Z. B.; Xie, H. H.; Tang, S. Y.; Yu, X. F.; Guo, Z. N.; Shao, J. D.; Zhang, H.; Huang, H.; Wang, H. Y.; Chu, P. K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem., Int. Ed. 2015, 54, 11526–11530.

    CAS  Google Scholar 

  46. Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

    CAS  Google Scholar 

  47. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

    Google Scholar 

  48. Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.

    Google Scholar 

  49. Qiu, M.; Wang, D.; Liang, W. Y.; Liu, L. P.; Zhang, Y.; Chen, X.; Sang, D. K.; Xing, C. Y.; Li, Z. J.; Dong, B. Q. et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 501–506.

    CAS  Google Scholar 

  50. Xie, H. H.; Li, Z. B.; Sun, Z. B.; Shao, J. D.; Yu, X. F.; Guo, Z. N.; Wang, J. H.; Xiao, Q. L.; Wang, H. Y.; Wang, Q. Q. et al. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small 2016, 12, 4136–4145.

    CAS  Google Scholar 

  51. Ji, X. Y.; Kong, N.; Wang, J. Q.; Li, W. L.; Xiao, Y. L.; Gan, S. T.; Zhang, Y.; Li, Y. J.; Song, X. R.; Xiong, Q. Q. et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 1803031.

    Google Scholar 

  52. Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.

    Google Scholar 

  53. Zhang, M.; Wu, Q.; Zhang, F.; Chen, L. L.; Jin, X. X.; Hu, Y. W.; Zheng, Z.; Zhang, H. 2D Black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 2019, 7, 1800224.

    Google Scholar 

  54. Liang, X.; Ye, X. Y.; Wang, C.; Xing, C. Y.; Miao, Q. W.; Xie, Z. J.; Chen, X. L.; Zhang, X. D.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 2019, 296, 150–161.

    CAS  Google Scholar 

  55. Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y. H.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.

    CAS  Google Scholar 

  56. Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J.; Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891–2912.

    CAS  Google Scholar 

  57. Zhou, Y.; Zhang, M. X.; Guo, Z. N.; Miao, L. L.; Han, S. T.; Wang, Z. Y.; Zhang, X. W.; Zhang, H.; Peng, Z. C. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 2017, 4, 997–1019.

    CAS  Google Scholar 

  58. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  59. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

    CAS  Google Scholar 

  60. Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911.

    CAS  Google Scholar 

  61. Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660–5665.

    CAS  Google Scholar 

  62. Lan, S. F.; Rodrigues, S.; Kang, L.; Cai, W. S. Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176–1181.

    CAS  Google Scholar 

  63. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

    Google Scholar 

  64. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

    Google Scholar 

  65. Lin, J. J.; Liang, L. B.; Ling, X.; Zhang, S. Q.; Mao, N. N.; Zhang, N.; Sumpter, B. G.; Meunier, V.; Tong, L. M.; Zhang, J. Enhanced Raman scattering on in-plane anisotropic layered materials. J. Am. Chem. Soc. 2015, 137, 15511–15517.

    CAS  Google Scholar 

  66. Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944–3953.

    CAS  Google Scholar 

  67. Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

    CAS  Google Scholar 

  68. Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978–8983.

    CAS  Google Scholar 

  69. Fei, R. X.; Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014, 14, 2884–2889.

    CAS  Google Scholar 

  70. Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

    CAS  Google Scholar 

  71. Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F. et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996–7002.

    CAS  Google Scholar 

  72. Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

    CAS  Google Scholar 

  73. Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 2015, 9, 11249–11257.

    CAS  Google Scholar 

  74. Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 2016, 28, 3352–3359.

    CAS  Google Scholar 

  75. Ma, D. T.; Zhao, J. L.; Wang, R.; Xing, C. Y.; Li, Z. J.; Huang, W. C.; Jiang, X. T.; Guo, Z. N.; Luo, Z. Q.; Li, Y. et al. Ultrathin GeSe nanosheets: From systematic synthesis, to studies of carrier dynamics and applications for high-performance UV-Vis photo-detector. ACS Appl. Mater. Interfaces 2019, 11, 4278–4287.

    CAS  Google Scholar 

  76. Xue, D. J.; Tan, J. H.; Hu, J. S.; Hu, W. P.; Guo, Y. G.; Wan, L. J. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528–4533.

    CAS  Google Scholar 

  77. Gomes, L. C.; Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 2015, 92, 085406.

    Google Scholar 

  78. Hu, T.; Dong, J. M. Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys. 2016, 18, 32514–32520.

    CAS  Google Scholar 

  79. Tan, D. Z.; Lim, H. E.; Wang, F. J.; Mohamed, N. B.; Mouri, S.; Zhang, W. J.; Miyauchi, Y.; Ohfuchi, M.; Matsuda, K. Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide. Nano Res. 2017, 10, 546–555.

    CAS  Google Scholar 

  80. Li, X. Z.; Xia, J.; Wang, L.; Gu, Y. Y.; Cheng, H. Q.; Meng, X. M. Layered SnSe nano-plates with excellent in-plane anisotropic properties of Raman spectrum and photo-response. Nanoscale 2017, 9, 14558–14564.

    CAS  Google Scholar 

  81. Tian, Z.; Guo, C. L.; Zhao, M. X.; Li, R. R.; Xue, J. M. Two-dimensional SnS: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 2017, 11, 2219–2226.

    CAS  Google Scholar 

  82. Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976–14982.

    CAS  Google Scholar 

  83. Liu, J.; Pantelides, S. T. Anisotropic thermal expansion of group-IV monochalcogenide monolayers. Appl. Phys. Express 2018, 11, 101301.

    Google Scholar 

  84. Mannix, A. J.; Zhang, Z. H.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444–450.

    CAS  Google Scholar 

  85. Wang, V.; Geng, W. T. Lattice defects and the mechanical anisotropy of borophene. J. Phys. Chem. C 2017, 121, 10224–10232.

    CAS  Google Scholar 

  86. Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B(36) as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 1–6.

    Google Scholar 

  87. Li, L. K.; Yu, Y. J.; Ye, G. L.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Google Scholar 

  88. Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035–10042.

    CAS  Google Scholar 

  89. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    CAS  Google Scholar 

  90. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    CAS  Google Scholar 

  91. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic dirac semimetal state in black phosphorus. Science. 2015, 349, 723–726.

    CAS  Google Scholar 

  92. Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

    CAS  Google Scholar 

  93. Chen, H.; Huang, P.; Guo, D.; Xie, G. X. Anisotropic mechanical properties of black phosphorus nanoribbons. J. Phys. Chem. C 2016, 120, 29491–29497.

    CAS  Google Scholar 

  94. Wang, Y.; Xu, G. Z.; Hou, Z. P.; Yang, B. C.; Zhang, X. M.; Liu, E. K.; Xi, X. K.; Liu, Z. Y.; Zeng, Z. M.; Wang, W. H. et al. Large anisotropic thermal transport properties observed in bulk single crystal black phosphorus. Appl. Phys. Lett. 2016, 108, 092102.

    Google Scholar 

  95. Liu, X. L.; Ryder, C. R.; Wells, S. A.; Hersam, M. C. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods 2017, 1, 1700143.

    Google Scholar 

  96. Chen, S.; Cheng, Y.; Zhang, G.; Pei, Q. X.; Zhang, Y. W. Anisotropic wetting characteristics of water droplets on phosphorene: Roles of layer and defect engineering. J. Phys. Chem. C 2018, 122, 4622–4627.

    CAS  Google Scholar 

  97. Jiang, H.; Shi, H. Y.; Sun, X. D.; Gao, B. Optical anisotropy of few-layer black phosphorus visualized by scanning polarization modulation microscopy. ACS Photonics 2018, 5, 2509–2515.

    CAS  Google Scholar 

  98. Yang, H.; Jussila, H.; Autere, A.; Komsa, H. P.; Ye, G. J.; Chen, X. H.; Hasan, T.; Sun, Z. P. Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photonics 2017, 4, 3023–3030.

    CAS  Google Scholar 

  99. Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.

    Google Scholar 

  100. Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. 2015, 127, 2396–2399.

    Google Scholar 

  101. Tao, J.; Sheng, W. F.; Wu, S.; Liu, L.; Feng, Z. H.; Wang, C.; Hu, C. G.; Yao, P.; Zhang, H.; Pang, W. et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 2015, 9, 11362–11370.

    CAS  Google Scholar 

  102. Lee, S.; Yang, F.; Suh, J.; Yang, S. J.; Lee, Y.; Li, G.; Choe, H. S.; Suslu, A.; Chen, Y. B.; Ko, C. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 2015, 6, 8573.

    CAS  Google Scholar 

  103. Zhao, J. L.; Zhu, J. J.; Cao, R.; Wang, H. D.; Guo, Z. N.; Sang, D. K.; Tang, J. N.; Fan, D. Y.; Li, J. Q.; Zhang, H. Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat. Commun. 2019, 10, 4062.

    Google Scholar 

  104. Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363.

    CAS  Google Scholar 

  105. Hultgren, R.; Gingrich, N. S.; Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351–355.

    CAS  Google Scholar 

  106. Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S. Synthesis and some properties of black phosphorus single crystals. Physica B+C 1981, 105, 99–102.

    CAS  Google Scholar 

  107. Endo, S.; Akahama, Y.; Terada, S. I.; Narita, S. I. Growth of large single crystals of black phosphorus under high pressure. Jpn. J. Appl. Phys. 1982, 21, L482–L484.

    CAS  Google Scholar 

  108. Shirotani, I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst. 1982, 86, 203–211.

    Google Scholar 

  109. Krebs, V. H.; Schultze-Gebhardt, F.. Acta Crystallogr. 1955, 8, 412–419.

    CAS  Google Scholar 

  110. Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.

    CAS  Google Scholar 

  111. Nilges, T.; Kersting, M.; Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 2008, 181, 1707–1711.

    CAS  Google Scholar 

  112. Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 2014, 405, 6–10.

    Google Scholar 

  113. Li, X. S.; Deng, B. C.; Wang, X. M.; Chen, S. Z.; Vaisman, M.; Karato, S. I.; Pan, G.; Lee, M. L.; Cha, J.; Wang, H. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2015, 2, 031002.

    Google Scholar 

  114. Sang, D. K.; Wang, H. D.; Guo, Z. N.; Xie, N.; Zhang, H. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 2019, 29, 1903419.

    CAS  Google Scholar 

  115. Pei, J. J.; Gai, X.; Yang, J.; Wang, X. B.; Yu, Z. F.; Choi, D. Y.; Luther-Davies, B.; Lu, Y. R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450.

    CAS  Google Scholar 

  116. Zhao, Y. T.; Wang, H. Y.; Huang, H.; Xiao, Q. L.; Xu, Y. H.; Guo, Z. N.; Xie, H. H.; Shao, J. D.; Sun, Z. B.; Han, W. J. et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem., Int. Ed. 2016, 55, 5003–5007.

    CAS  Google Scholar 

  117. Zhou, Q. H.; Chen, Q.; Tong, Y. L.; Wang, J. L. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem., Int. Ed. 2016, 55, 11437–11441.

    CAS  Google Scholar 

  118. Abellán, G.; Wild, S.; Lloret, V.; Scheuschner, N.; Gillen, R.; Mundloch, U.; Maultzsch, J.; Varela, M.; Hauke, F.; Hirsch, A. Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 2017, 139, 10432–10440.

    Google Scholar 

  119. Avsar, A.; Tan, J. Y.; Luo, X.; Khoo, K. H.; Yeo, Y.; Watanabe, K.; Taniguchi, T.; Quek, S. Y.; Ozyilmaz, B. Van der waals bonded Co/h-BN contacts to ultrathin black phosphorus devices. Nano Lett. 2017, 17, 5361–5367.

    CAS  Google Scholar 

  120. Zhu, H.; McDonnell, S.; Qin, X. Y.; Azcatl, A.; Cheng, L. X.; Addou, R.; Kim, J.; Ye, P. D.; Wallace, R. M. Al2O3 on black phosphorus by atomic layer deposition: An in situ interface study. ACS Appl. Mater. Interfaces 2015, 7, 13038–13043.

    CAS  Google Scholar 

  121. Luo, X.; Rahbarihagh, Y.; Hwang, J. C. M.; Liu, H.; Du, Y. C.; Ye, P. D. Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron Device Lett. 2014, 35, 1314–1316.

    Google Scholar 

  122. Kim, J. S.; Liu, Y. N.; Zhu, W. N.; Kim, S.; Wu, D.; Tao, L.; Dodabalapur, A.; Lai, K. J.; Akinwande, D. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 2015, 5, 8989.

    CAS  Google Scholar 

  123. Guo, Z. N.; Chen, S.; Wang, Z. Z.; Yang, Z. Y.; Liu, F.; Xu, Y. H.; Wang, J. H.; Yi, Y.; Zhang, H.; Liao, L. et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 2017, 29, 1703811.

    Google Scholar 

  124. Wang, H. D.; Sang, D. K.; Guo, Z. N.; Cao, R.; Zhao, J. L.; Shah, M. N. U.; Fan, T. J.; Fan, D. Y.; Zhang, H. Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 2018, 27, 087308.

    Google Scholar 

  125. Tang, X.; Liang, W. Y.; Zhao, J. L.; Li, Z. J.; Qiu, M.; Fan, T. J.; Luo, C. S.; Zhou, Y.; Li, Y.; Guo, Z. N. et al. Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 2017, 13, 1702739.

    Google Scholar 

  126. Xu, Y. H.; Wang, Z. T.; Guo, Z. N.; Huang, H.; Xiao, Q. L; Zhang, H.; Yu, X. F. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 2016, 4, 1223–1229.

    CAS  Google Scholar 

  127. Jiang, X. F.; Zeng, Z. K.; Li, S.; Guo, Z. N.; Zhang, H.; Huang, F.; Xu, Q. H. Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses. Materials 2017, 10, 210.

    Google Scholar 

  128. Lin, C.; Grassi, R.; Low, T.; Helmy, A. S. Multilayer black phosphorus as a versatile mid-infrared electro-optic material. Nano Lett. 2016, 16, 1683–1689.

    CAS  Google Scholar 

  129. Xu, Y. H.; Jiang, X. F.; Ge, Y. Q.; Guo, Z. N.; Zeng, Z. K.; Xu, Q. H.; Zhang, H.; Yu, X. F.; Fan, D. Y. Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. J. Mater. Chem. C 2017, 3007–3013.

  130. Liu, J. J.; Liu, J.; Guo, Z. N.; Zhang, H.; Ma, W. W.; Wang, J. Y.; Su, L. B. Dual-wavelength Q-switched Er: SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express 2016, 24, 30289–30295.

    CAS  Google Scholar 

  131. Li, C.; Liu, J.; Guo, Z. N.; Zhang, H.; Ma, W. W.; Wang, J. Y.; Xue, X. D.; Su, L. B. Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er: CaF2 mid-infrared laser. Opt. Commun. 2018, 406, 158–162.

    CAS  Google Scholar 

  132. Cao, R.; Wang, H. D.; Guo, Z. N.; Sang, D. K.; Zhang, L. Y.; Xiao, Q. L.; Zhang, Y. P.; Fan, D. Y.; Li, J. Q.; Zhang, H. Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 2019, 7, 1900020.

    Google Scholar 

  133. Hu, Z. H.; Li, Q.; Lei, B.; Wu, J.; Zhou, Q. H.; Gu, C. D.; Wen, X. L.; Wang, J. Y.; Liu, Y. P.; Li, S. S. et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 2018, 30, 1801931.

    Google Scholar 

  134. Na, J. H.; Park, K.; Kim, J. T.; Choi, W. K.; Song, Y. W. Air-stable few-layer black phosphorus phototransistor for near-infrared detection. Nanotechnology 2017, 28, 085201.

    Google Scholar 

  135. Yang, Y. S.; Liu, S. C.; Yang, W.; Li, Z. B.; Wang, Y.; Wang, X.; Zhang, S. S.; Zhang, Y.; Long, M. S.; Zhang, G. M. et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018, 140, 4150–4156.

    CAS  Google Scholar 

  136. Tian, H.; Guo, Q. S.; Xie, Y. J.; Zhao, H.; Li, C.; Cha, J. J.; Xia, F. N.; Wang, H. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991–4997.

    CAS  Google Scholar 

  137. Yang, G. H.; Wan, X. J.; Gu, Z. P.; Zeng, X. R.; Tang, J. N. Near infrared photothermal-responsive poly(vinyl alcohol)/black phosphorus composite hydrogels with excellent on-demand drug release capacity. J. Mater. Chem. B 2018, 6, 1622–1632.

    CAS  Google Scholar 

  138. Pumera, M. Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 2017, 93, 1–6.

    CAS  Google Scholar 

  139. Lee, G.; Kim, S.; Jung, S.; Jang, S.; Kim, J. Suspended black phosphorus nanosheet gas sensors. Sensors Actuators B Chem. 2017, 250, 569–573.

    CAS  Google Scholar 

  140. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

    CAS  Google Scholar 

  141. Zhang, Y. Q.; Dong, N. N.; Tao, H. C.; Yan, C.; Huang, J. W.; Liu, T. F.; Robertson, A. W.; Texter, J.; Wang, J.; Sun, Z. Y. Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 2017, 29, 6445–6456.

    CAS  Google Scholar 

  142. Youngblood, N.; Li, M. Ultrafast photocurrent measurements of a black phosphorus photodetector. Appl. Phys. Lett. 2017, 110, 051102.

    Google Scholar 

  143. Flores, E.; Ares, J. R.; Castellanos-Gomez, A.; Barawi, M.; Ferrer, I. J.; Sánchez, C. Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 2015, 106, 022102.

    Google Scholar 

  144. Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.

    Google Scholar 

  145. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    CAS  Google Scholar 

  146. Jain, A.; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.

    CAS  Google Scholar 

  147. Qin, G. Z.; Yan, Q. B.; Qin, Z. Z.; Yue, S. Y.; Hu, M.; Su, G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 2015, 17, 4854–4858.

    CAS  Google Scholar 

  148. Cai, Y. Q.; Ke, Q. Q.; Zhang, G.; Feng, Y. P.; Shenoy, V. B.; Zhang, Y. W. Giant phononic anisotropy and unusual anharmonicity of phosphorene: Interlayer coupling and strain engineering. Adv. Funct. Mater. 2015, 25, 2230–2236.

    CAS  Google Scholar 

  149. Smith, B.; Vermeersch, B.; Carrete, J.; Ou, E.; Kim, J.; Mingo, N.; Akinwande, D.; Shi, L. Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Adv. Mater. 2017, 29, 1603756.

    Google Scholar 

  150. Wang, Z. H.; Jia, H.; Zheng, X. Q.; Yang, R.; Ye, G. J.; Chen, X. H.; Feng, P. X. L. Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy. Nano Lett. 2016, 16, 5394–5400.

    Google Scholar 

  151. Zhu, W. N.; Yogeesh, M. N.; Yang, S. X.; Aldave, S. H.; Kim, J. S.; Sonde, S.; Tao, L.; Lu, N. S.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883–1890.

    CAS  Google Scholar 

  152. Kim, S. K.; Bhatia, R.; Kim, T. H.; Seol, D.; Kim, J. H.; Kim, H.; Seung, W.; Kim, Y.; Lee, Y. H.; Kim, S. W. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483–489.

    CAS  Google Scholar 

  153. Wang, Z. H.; Jia, H.; Zheng, X. Q.; Yang, R.; Wang, Z. F.; Ye, G. J.; Chen, X. H.; Shan, J.; Feng, P. X. L. Black phosphorus nano-electromechanical resonators vibrating at very high frequencies. Nanoscale 2015, 7, 877–884.

    CAS  Google Scholar 

  154. Jiang, J. W.; Park, H. S. Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 2014, 47, 385304.

    Google Scholar 

  155. Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

    CAS  Google Scholar 

  156. Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645–3650.

    CAS  Google Scholar 

  157. Park, Y. J.; Sharma, B. K.; Shinde, S. M.; Kim, M. S.; Jang, B.; Kim, J. H.; Ahn, J. H. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019, 13, 3023–3030.

    CAS  Google Scholar 

  158. Abbas, A. N.; Liu, B. L.; Chen, L.; Ma, Y. Q.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. W. Black phosphorus gas sensors. ACS Nano 2015, 9, 5618–5624.

    CAS  Google Scholar 

  159. Liu, B. L.; Köpf, M.; Abbas, A. N.; Wang, X. M.; Guo, Q. S.; Jia, Y. C.; Xia, F. N.; Weihrich, R.; Bachhuber, F.; Pielnhofer, F. et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 2015, 27, 4423–4429.

    CAS  Google Scholar 

  160. Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. J.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. J.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119–124.

    CAS  Google Scholar 

  161. Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648–2653.

    CAS  Google Scholar 

  162. Gong, Y. J.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin, J. H.; Najmaei, S.; Lin, Z.; Elías, A. L.; Berkdemir, A.; You, G. et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 2014, 14, 442–449.

    CAS  Google Scholar 

  163. Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y.; Guo, P. F. et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.

    CAS  Google Scholar 

  164. Jing, Y.; Ma, Y. D.; Li, Y. F.; Heine, T. GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement. Nano Lett. 2017, 17, 1833–1838.

    CAS  Google Scholar 

  165. Guan, J.; Liu, D.; Zhu, Z.; Tománek, D. Two-dimensional phosphorus carbide: Competition between sp2 and sp3 bonding. Nano Lett. 2016, 16, 3247–3252.

    CAS  Google Scholar 

  166. Amani, M.; Regan, E.; Bullock, J.; Ahn, G. H.; Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724–11731.

    CAS  Google Scholar 

  167. Li, L.; Wang, W. K.; Gong, P. L.; Zhu, X. D.; Deng, B.; Shi, X. Q.; Gao, G. Y.; Li, H. Q.; Zhai, T. Y. 2D GeP: An unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv. Mater. 2018, 30, 1706771.

    Google Scholar 

  168. Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415.

    CAS  Google Scholar 

  169. Guo, J.; Huang, D. Z.; Zhang, Y.; Yao, H. Z.; Wang, Y. Z.; Zhang, F.; Wang, R.; Ge, Y. Q.; Song, Y. F.; Guo, Z. N. et al. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics. Laser Photonics Rev. 2019, 13, 1900123.

    Google Scholar 

  170. Shirotani, I.; Mikami, J.; Adachi, T.; Katayama, Y.; Tsuji, K.; Kawamura, H.; Shimomura, O.; Nakajima, T. Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures. Phys. Rev. B 1994, 50, 16274–16278.

    CAS  Google Scholar 

  171. Barreteau, C.; Michon, B.; Besnard, C.; Giannini, E. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J. Cryst. Growth 2016, 443, 75–80.

    CAS  Google Scholar 

  172. Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

    Google Scholar 

  173. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

    CAS  Google Scholar 

  174. Zhang, Z. H.; Yang, Y.; Penev, E. S.; Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 2017, 27, 1605059.

    Google Scholar 

  175. Lherbier, A.; Botello-Méndez, A. R.; Charlier, J. C. Electronic and optical properties of pristine and oxidized borophene. 2D Mater. 2016, 3, 045006.

    Google Scholar 

  176. Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. F.; Zhang, R. J.; Zhu, H. Y. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C 2016, 4, 3592–3598.

    CAS  Google Scholar 

  177. Zhou, H. B.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Superior lattice thermal conductance of single-layer borophene. npj 2D Mater. Appl. 2017, 1, 14.

    Google Scholar 

  178. Wang, Z. Q.; Lü, T. Y.; Wang, H. Q.; Feng, Y. P.; Zheng, J. C. High anisotropy of fully hydrogenated borophene. Phys. Chem. Chem. Phys. 2016, 18, 31424–31430.

    CAS  Google Scholar 

  179. Kong, L. J.; Wu, K. H.; Chen, L. Recent progress on borophene: Growth and structures. Front. Phys. 2018, 13, 138105.

    Google Scholar 

  180. Tsafack, T.; Yakobson, B. I. Thermomechanical analysis of two-dimensional boron monolayers. Phys. Rev. B 2016, 93, 165434.

    Google Scholar 

  181. Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Beigi, S. I.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

    CAS  Google Scholar 

  182. Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

    CAS  Google Scholar 

  183. Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

    CAS  Google Scholar 

  184. Zhang, Z. H.; Mannix, A. J.; Liu, X. L.; Hu, Z. L.; Guisinger, N. P.; Hersam, M. C.; Yakobson, B. I. Near-equilibrium growth from borophene edges on silver. Sci. Adv. 2019, 5, eaax0246.

    CAS  Google Scholar 

  185. Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

    CAS  Google Scholar 

  186. Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.

    CAS  Google Scholar 

  187. Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 2015, 54, 13022–13026.

    CAS  Google Scholar 

  188. Ji, X. Y.; Kong, N.; Wang, J. Q.; Li, W. L.; Xiao, Y. L.; Gan, S. T.; Zhang, Y.; Li, Y. J.; Song, X. R.; Xiong, Q. Q. et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 1803031.

    Google Scholar 

  189. Ma, D. T.; Wang, R.; Zhao, J. L.; Chen, Q. Y.; Wu, L. M.; Li, D. L.; Su, L. M.; Jiang, X. T.; Luo, Z.; Ge, Y. Q. et al. A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale 2020, 12, 5313–5323.

    CAS  Google Scholar 

  190. Ma, D. T.; Zhao, J. L.; Xie, J. L.; Zhang, F.; Wang, R.; Wu, L. M.; Liang, W. Y.; Li, D. L.; Ge, Y. Q.; Li, J. Q. et al. Ultrathin boron nanosheets as an emerging two-dimensional photoluminescence material for bioimaging. Nanoscale Horiz. 2020, 5, 705–713.

    CAS  Google Scholar 

  191. Wang, Y. J.; Fan, J. F.; Trenary, M. Surface chemistry of boron oxidation. 1. reactions of oxygen and water with boron films grown on Tantalum(110). Chem. Mater. 1993, 5, 192–198.

    CAS  Google Scholar 

  192. Cui, Z. H.; Jimenez-Izal, E. J.; Alexandrova, A. N. Prediction of two-dimensional phase of boron with anisotropic electric conductivity. J. Phys. Chem. Lett. 2017, 8, 1224–1228.

    CAS  Google Scholar 

  193. Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.

    CAS  Google Scholar 

  194. Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

    CAS  Google Scholar 

  195. Qin, G. Z.; Qin, Z. Z.; Fang, W. Z.; Zhang, L. C.; Yue, S. Y.; Yan, Q. B.; Hu, M.; Su, G. Diverse anisotropy of phonon transport in two-dimensional group IV–VI compounds: A comparative study. Nanoscale 2016, 8, 11306–11319.

    CAS  Google Scholar 

  196. Gomes, L. C.; Carvalho, A.; Neto, A. H. C. Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 2015, 92, 214103.

    Google Scholar 

  197. Guo, Y.; Zhou, S.; Bai, Y. Z.; Zhao, J. J. Oxidation resistance of monolayer group-IV monochalcogenides. ACS Appl. Mater. Interfaces 2017, 9, 12013–12020.

    CAS  Google Scholar 

  198. Kamal, C.; Chakrabarti, A.; Ezawa, M. Direct band gaps in group IV–VI monolayer materials: Binary counterparts of phosphorene. Phys. Rev. B 2016, 93, 125428.

    Google Scholar 

  199. Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, G. C.; Hersam, M. C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597–602.

    CAS  Google Scholar 

  200. Hofmann, W. Ergebnisse der strukturbestimmung komplexer sulfide. Z. Krist-Cryst. Mater. 1935, 92, 161–185.

    CAS  Google Scholar 

  201. Okazaki, A.; Ueda, I. The crystal structure of stannous selenide SnSe. J. Phys. Soc. Jpn. 1956, 11, 470.

    CAS  Google Scholar 

  202. Okazaki, A. The crystal structure of germanium selenide GeSe. J. Phys. Soc. Jpn. 1958, 13, 1151–1155.

    CAS  Google Scholar 

  203. Brent, J. R.; Lewis, D. J.; Lorenz, T.; Lewis, E. A.; Savjani, N.; Haigh, S. J.; Seifert, G.; Derby, B.; O’Brien, P. Tin(II) sulfide (SnS) nanosheets by liquid-phase exfoliation of herzenbergite: IV–VI main group two-dimensional atomic crystals. J. Am. Chem. Soc. 2015, 137, 12689–12696.

    CAS  Google Scholar 

  204. Ramasamy, K.; Kuznetsov, V. L.; Gopal, K.; Malik, M. A.; Raftery, J.; Edwards, P. P.; O’Brien, P. Correction to organotin dithiocarbamates: Single-source precursors for tin sulfide thin films by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 2014, 25, 3348.

    Google Scholar 

  205. Gomes, L. C.; Carvalho, A.; Neto, A. H. C. Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Phys. Rev. B 2016, 94, 054103.

    Google Scholar 

  206. Santosh, K. C.; Longo, R. C.; Wallace, R. M.; Cho, K. Surface oxidation energetics and kinetics on MoS2 monolayer. J. Appl. Phys. 2015, 117, 135301.

    Google Scholar 

  207. Zhang, T. M.; Wan, Y. Y.; Xie, H. Y.; Mu, Y.; Du, P. W.; Wang, D.; Wu, X. J.; Ji, H. X.; Wan, L. J. Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J. Am. Chem. Soc. 2018, 140, 7561–7567.

    CAS  Google Scholar 

  208. Venuthurumilli, P. K.; Ye, P. D.; Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861–4867.

    CAS  Google Scholar 

  209. Zhou, W. H.; Zhang, S. L.; Wang, Y. Y.; Guo, S. Y.; Qu, H. Z.; Bai, P. X.; Li, Z.; Zeng, H. B. Anisotropic in-plane ballistic transport in monolayer black arsenic — phosphorus FETs. Adv. Electron. Mater. 2020, 6, 1901281.

    CAS  Google Scholar 

  210. Zhong, M. Z.; Xia, Q. L.; Pan, L. F.; Liu, Y. Q.; Chen, Y. B.; Deng, H. X.; Li, J. B.; Wei, Z. M. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic. Adv. Funct. Mater. 2018, 28, 1802581.

    Google Scholar 

  211. Mahmoud, M. M. A.; Joubert, D. P. First principles study of the structural, stability properties and lattice thermal conductivity of bulk ReSe2. Mater. Today Proc. 2018, 5, 10424–10430.

    CAS  Google Scholar 

  212. Wu, J. B.; Zhao, H.; Li, Y. R.; Ohlberg, D.; Shi, W.; Wu, W.; Wang, H.; Tan, P. H. Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv. Opt. Mater. 2016, 4, 756–762.

    CAS  Google Scholar 

  213. Liu, S. J.; Xiao, W. B.; Zhong, M. Z.; Pan, L. F.; Wang, X. T.; Deng, H. X.; Liu, J.; Li, J. B.; Wei, Z. M. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology 2018, 29, 184002.

    Google Scholar 

  214. Niu, S. Y.; Joe, G.; Zhao, H.; Zhou, Y. C.; Orvis, T.; Huyan, H. X.; Salman, J.; Mahalingam, K.; Urwin, B.; Wu, J. B. et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photonics 2018, 12, 392–396.

    CAS  Google Scholar 

  215. Ma, Y. Q.; Shen, C. F.; Zhang, A. Y.; Chen, L.; Liu, Y. H.; Chen, J. H.; Liu, Q. Z.; Li, Z.; Amer, M. R.; Nilges, T. et al. Black phosphorus field-effect transistors with work function tunable contacts. ACS Nano 2017, 11, 7126–7133.

    CAS  Google Scholar 

  216. Chen, Y. T.; Ren, R.; Pu, H. H.; Chang, J. B.; Mao, S.; Chen, J. H. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 2017, 89, 505–510.

    CAS  Google Scholar 

  217. Wu, L. M.; Dong, Y. Z.; Zhao, J. L.; Ma, D. T.; Huang, W. C.; Zhang, Y.; Wang, Y. Z.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q. et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 2019, 31, 1807981.

    Google Scholar 

  218. Ren, X. H.; Li, Z. J.; Huang, Z. Y.; Sang, D.; Qiao, H.; Qi, X.; Li, J. Q.; Zhong, J. X.; Zhang, H. Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector. Adv. Funct. Mater. 2017, 27, 1606834.

    Google Scholar 

  219. Hao, C. X.; Yang, B. C.; Wen, F. S.; Xiang, J. Y.; Li, L.; Wang, W. H.; Zeng, Z. M.; Xu, B.; Zhao, Z. S.; Liu, Z. Y. et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 2016, 28, 3194–3201.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the State Key Research Development Program of China (No. 2019YFB2203503), the National Natural Science Foundation of China (Nos. 61875138, 61961136001, 61435010, and U1801254), the Guangdong Science Foundation for Distinguished Young Scholars (No. 2018B030306038), the Science and Technology Innovation Commission of Shenzhen (Nos. JCYJ20180507182047316, KQJSCX20180328095501798, KQTD2015032416270385, and GJHZ20180928160209731), the Natural Science Foundation of SZU (No. 860-000002110429), the Educational Commission of Guangdong Province (Nos. 2016KCXTD006 and 2018KCXTD026), and the Science and Technology Development Fund (Nos. 007/2017/A1 and 132/2017/A3), Macao SAR, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhinan Guo, Ni Xie or Han Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Ma, D., Wang, C. et al. Recent advances in anisotropic two-dimensional materials and device applications. Nano Res. 14, 897–919 (2021). https://doi.org/10.1007/s12274-020-3018-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3018-z

Keywords

Navigation