Skip to main content
Log in

Two-dimensional semiconductors with possible high room temperature mobility

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have calculated the longitudinal acoustic phonon limited electron mobility of 14 two-dimensional semiconductors with composition of MX 2, where M (= Mo, W, Sn, Hf, Zr and Pt) is the transition metal, and X is S, Se and Te. We treated the scattering matrix by the deformation potential approximation. We found that out of 14 compounds, MoTe2, HfSe2 and ZrSe2 are promising regarding to their possible high mobility and finite band gap. The phonon limited mobility can be above 2,500 cm2·V−1·s−1 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  2. Das Sarma, S.; Adam, S.; Hwang, E. H.; Ross, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407.

    Article  Google Scholar 

  3. Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.

    Article  Google Scholar 

  4. Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

    Article  Google Scholar 

  5. Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

    Article  Google Scholar 

  6. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    Article  Google Scholar 

  7. Popov, I.; Seifert, G.; Tománek. D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.

    Article  Google Scholar 

  8. Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited mobility in n-type single layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

    Article  Google Scholar 

  9. Li, X. D.; Mullen, J. T.; Jin, Z.; Borysenko, K. M.; Nardelli, M. B.; Kim, K.W. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 2013, 87, 115418.

    Article  Google Scholar 

  10. Kaasbjerg, K.; Thygesen, K. S.; Jauho, A. P. Acoustic phonon limited mobility in twodimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 2013, 87, 235312.

    Article  Google Scholar 

  11. Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.

    Article  Google Scholar 

  12. Ataca, C.; Sahin, H.; Ciraci, S. Stable, single-layer MX 2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 2012, 116, 8983–8999.

    Article  Google Scholar 

  13. Lebègue, S.; Björkman, T.; Klintenberg, M.; Nieminen, R. M.; Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 2013, 3, 031002.

    Google Scholar 

  14. Koepernik, K.; Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band structure scheme. Phys. Rev. B 1999, 59, 1743.

    Article  Google Scholar 

  15. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

    Article  Google Scholar 

  16. Bardeen, J.; Shockey, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72.

    Article  Google Scholar 

  17. Takagi, S. I.; Hoyt, J. L.; Welser, J. J.; Gibbons, J. F. Comparative study of phonon limited mobility of two dimensional electrons in strained and unstrained Si metal oxide semiconductor field effect transistors. J. Appl. Phys. 1996, 80, 1567.

    Article  Google Scholar 

  18. Bruzzone, S.; Fiori, G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett. 2011, 99, 222108.

    Article  Google Scholar 

  19. Giannozzi, P.; Baroni, S.; Bonini, N.; Clandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys: Cond. Matt. 2009, 21, 395502.

    Google Scholar 

  20. Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.

    Article  Google Scholar 

  21. Dolui, K.; Rungger, I.; Pemmaraju, C. D.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Huang, Z., Zhang, W. et al. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2014). https://doi.org/10.1007/s12274-014-0532-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0532-x

Keywords

Navigation