Skip to main content
Log in

High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A spherical carbon coated nano-structured LiFePO4 composite is synthesized by a polymer-assisted method from inexpensive iron(III) raw material. The synthesis process includes two steps: (1) nano-FePO4/polyaniline composites with core–shell structure are synthesized through the in-situ polymerization of aniline; (2) LiFePO4/C composites are prepared through carbothermal reduction with the nano-FePO4/polyaniline and sucrose as raw materials. The structure, surface morphology of the materials and the properties of the coated carbon are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The obtained nano-structured LiFePO4/carbon composite has a spherical morphology compose of ordered olivine structure, which is coated with 2 nm thick amorphous layer of carbon. At the same time, the materials are linked together by amorphous carbon from sucrose decomposition. The aniline plays an important role during the synthesis process. The electrochemical properties of the materials are tested by charge–discharge measurements. The obtained nano-structured LiFePO4/carbon composite shows excellent electrochemical properties, especially its high rate performance. It exhibits initial discharge capacities of 138, 136, 118, 103, and 92 mA h g–1 at 0.2, 1, 10, 20, and 30 C rate between 3.65 and 2.0 V, respectively. That makes it a promising cathode material for advanced power Li-ion batteries. The excellent electrochemical properties of the materials can be ascribed to the two different amorphous carbons. The carbon coated on the surface of LiFePO4 effectively reduces inter-particle agglomeration of the LiFePO4 particles. The carbon interlinked between the composite improve the electronic conductivity. Those shorten the lithium ions diffusion length and improve the electric contact between LiFePO4 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Chen, S.e, Zheng, J., Mei, D., Han, K.S., Engelhard, M.H., Zhao, W., Xu, W., Liu, J., and Zhang, J., High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes, Adv. Mater., 2018, vol. 30(21), p. 1706102.

    Article  Google Scholar 

  2. Liu, Y., Xie, K., Pan, Y., Li, Y., Wang, H., Lu, W., and Zheng, C., LiPON as a protective layer on graphite anode to extend the storage life of Li-ion battery at elevated temperature, Ionics, 2018, vol. 24, p. 723.

    Article  CAS  Google Scholar 

  3. Lu, W., Xiong, S., Pu, W., Xie, K., and Zheng, C., Carbonate-Grafted Polysilane as a New Additive for Elevated-Temperature Lithium-Ion Batteries, ChemElectroChem, 2017, vol. 4, p. 2012.

    Article  Google Scholar 

  4. Lu, W., Xie, K., Chen, Z., Pan, Y., and Zheng, C., Preparation and characterization of trifluoroethyl aliphatic carboxylates as co-solvents for the carbonate-based electrolyte of lithium-ion batteries, J. Fluorine Chem., 2014, vol. 161, p. 110.

    Article  CAS  Google Scholar 

  5. Lu, W., Xiong, S., Xie, K., Pan, Y., and Zheng, C., Identification of solid electrolyte interphase formed on graphite electrode cycled in trifluoroethyl aliphatic carboxylate-based electrolytes for low-temperature lithium-ion batteries, Ionics, 2016, vol. 22(11), p. 2095.

    Article  CAS  Google Scholar 

  6. Lu, W., Xie, K., Pan, Y., Chen, Z., and Zheng, C., Effects of carbon-chain length of trifluoroacetate co-solvents for lithium-ion battery electrolytes using at low temperature, J. Fluorine Chem., 2013, vol. 156, p. 136.

    Article  CAS  Google Scholar 

  7. Lu, W., Xie, K., Chen, Z., Xiong, S., Pa,n Y., and Zhen,g C., A new co-solvent for wide temperature lithium ion battery electrolytes: 2,2,2-Trifluoroethyl n‑caproate, J. Power sources, 2015, vol. 274, p. 676.

    Article  CAS  Google Scholar 

  8. Chen, Y., Xiang, K., Zhou, W., Zhu, Y., Bai, N., and Chen, H., LiFePO4/C ultra-thin nano-flakes with ultra-high rate capability and ultra-long cycling life for lithium ion batteries, J. Alloys Compounds, 2018, vol. 749, p. 1063.

    Article  CAS  Google Scholar 

  9. Tsuda, T., Ando, N., Matsubara, K., Tanabe, T., Itagaki, K., Soma, N., Nakamura, S., Hayashi, N., Gunji, T., Ohsaka, T., and Matsumoto, F., Improvement of high-rate charging/discharging performance of a lithium ion battery composed of laminated LiFePO4 cathodes/graphite anodes having porous electrode structures fabricated with a pico-second pulsed laser, Electrochim. Acta, 2018, vol. 291, p. 267.

    Article  CAS  Google Scholar 

  10. Feng, J. and Wang, Y., High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries, Appl. Surf. Sci., 2016, vol. 390, p. 481.

    Article  CAS  Google Scholar 

  11. Guo, H. and Gao, Q., High-performance LiFePO4/C nanocomposites prepared from a micro-reactor based on an unusual water–oil system, RSC Advances, 2013, vol. 3, p. 7245.

    Article  CAS  Google Scholar 

  12. Kim, S., Mathew, V., Kang, J, Gim, J., Song, J., Jo, J., and Kim, J., High rate capability of LiFePO4 cathodes doped with a high amount of Ti, Ceramics Int., 2016, vol. 42, p. 7230.

    Article  CAS  Google Scholar 

  13. Takahashi, I., Mori, T., Yoshinari, T., Orikasa, Y., Koyama, Y., Murayama, H., Fukuda, K., Hatano, M., Arai, H., Uchimoto, Y., and Terai, T., Irreversible phase transition between LiFePO4 and FePO4 during high-rate charge–discharge reaction by operando X‑ray diffraction, J. Power Sources, 2016, vol. 309, p. 122.

    Article  CAS  Google Scholar 

  14. Kuei-Feng Hsua, B. S. H. B. Tsay, S., Chou, T., Sheu, H., Lee, J., and Hwang, B., Formation mechanism of LiFePO4/C composite powders investigated by X-ray absorption spectroscopy, J. Power Sources, 2009, vol. 192, p. 660.

    Article  Google Scholar 

  15. Yi, X., Zhang, F., Zhang, B., Yu, W., Dai, Q., Hu, S., He, W., Tong, H., Zheng, J., and Liao, J., (010) facets dominated LiFePO4 nano-flakes confined in 3D porous graphene network as a high-performance Li-ion battery cathode, Ceram. Internat., 2018, vol. 44, p. 18181.

    Article  CAS  Google Scholar 

  16. Shang, H., Chu, W., Cheng, J., Pan, F., Cheng, D., Xia, D., Wang, W., and Wu, Z., Surface Phase Composition of Nanosized LiFePO4 and Their Enhanced Electrochemical Properties, J. Materi. Chem. A, 2013.

  17. Zhang, L. and Liang, H., Rapid Synthesis of LiFePO4 Nanoparticles by Microwave-Assisted Hydrothermal Method, Russ. J. Electrochem., 2013, vol. 49(5), p. 492.

    Article  CAS  Google Scholar 

  18. Liu, J., Zhang, X., Wang, R., and Zhang, J., Facile Synthesis of LiFePO4 Nanoparticles Coated by Few Layers of PAS with Quasi-Graphene Structure, Int. J. Electrochem. Sci., 2012, vol. 7, p. 12983.

    CAS  Google Scholar 

  19. Chen, M., Kou, K., Tu, M., Hu, J., Du, X., and Yang, B., Conducting reduced graphene oxide wrapped LiFePO4/C nanocrystal as cathode material for high-rate lithium secondary batteries, Solid State Ionics, 2017, vol. 310, p. 95.

    Article  CAS  Google Scholar 

  20. Xie, G., Zhu, H., Liu, X., and Yang, H., A Core–shell LiFePO4/C nanocomposite prepared via a sol–gel method assisted by citric acid, J. Alloys Compounds, 2013.

  21. Hu, Z., Yang, D., Yin, K., Liu, J., Li, F., Gao, W., Qin, Y., and Liu, H., The effect of Lithium source on the electrochemical performance of LiFePO4/C cathode materials synthesized by Sol–gel method, Advanced Mater Res, 2013, vol. 669, p. 311.

    Article  Google Scholar 

  22. Cech, O., Thomas, J.E., Sedlarikova, M., Fedorkova, A., Vondrak, J., Moreno, M.S., and Visintin, A., Performance Improvement on LiFePO4/C Composite Cathode for Lithium-ion Batteries, Solid State Sci., 2013.

  23. Li, X., Shao, Z., Liu, K., Zhao, Q., Liu, G., and Xu, B., Influence of Li:Fe molar ratio on the performance of the LiFePO4/C prepared by high temperature ball milling method, J. Electroanal. Chem., 2017, vol. 801, p. 368.

    Article  CAS  Google Scholar 

  24. Shangguan, E., Fu, S., Wu, S., Wan, Q., Wu, C., Li, J., Cai, X., Chang, Z., Wang, Z., Li, Q., and Jiang, K., Evolution of spent LiFePO4 powders into LiFePO4/C/FeS composites: A facile and smart approach to make sustainable anodes for alkaline Ni–Fe secondary batteries, J. Power Sources, 2018, vol. 403, p. 38.

    Article  CAS  Google Scholar 

  25. Zhou, N., Uchaker, E., Liu, Y., Liu, S., Liu, Y., and Cao, G., Effect of Carbon Content on Electrochemical Performance of LiFePO4/C Thin Film Cathodes, Int. J. Electrochem. Sci., 2012, vol. 7, p. 12633.

    CAS  Google Scholar 

  26. Zhao, N., Li, Y., Zhi, X., Wang, L., Zhao, X., Wang, Y., and Liang, G., Effect of Ce3+ doping on the properties of LiFePO4 cathode material, J. Rare Earths, 2016, vol. 34(2), p. 174.

    Article  CAS  Google Scholar 

  27. Zhao, C, Wang, L., Chen, J., and Gao, M., Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries, Electrochim. Acta, 2017, vol. 255, p. 266.

    Article  CAS  Google Scholar 

  28. Li, X., Shao, Z., Liu, K., Zhao, Q., Liu, G., and Xu, B., A facile ultrasound assisted high temperature ball milling synthesis of LiFePO4/graphene with enhanced electrochemical performance, Int. J. Hydrogen Energy, 2018, vol. 43, p. 18773.

    Article  CAS  Google Scholar 

  29. Wang, Q., Peng, D., Chen, Y., Xia, X., Liu, H., He, Y., and Ma, Q., A facile surfactant-assisted self-assembly of LiFePO4/graphene composites with improved rate performance for lithium ion batteries, J. Electroanal. Chem., 2018, vol. 818, p. 68.

    Article  CAS  Google Scholar 

  30. Wang, Y., Wang, Y., Hosono, E., Wang, K., and Zhou, H., The Design of a LiFePO4/Carbon Nanocomposite With a Core–Shell Structure and Its Synthesis by an In Situ Polymerization Restriction Method, Angew. Chem., 2008, vol. 47, p. 7461.

    Article  CAS  Google Scholar 

  31. Sehrawat, R. and Sil, A., Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery, Ionics, 2015, vol. 21(3), p. 673.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Anhui Province with Grants no. 1708085QB32, the Natural Science Foundation of China with Grants nos. 51576208, 11505290, the National Megnitic Confinement Fusion Science Program of China (no. 2018YFE0310400) and the National Key R&D Program of China (2017YFE 0300603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjing Pu or Wei Lu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenjing Pu, Lu, W., Chen, Z. et al. High Rate Performance of Nano-Structured LiFePO4/C Cathode Material Prepared by a Polymer-Assisted Method from Inexpensive Iron(III) Raw Material. Russ J Electrochem 56, 690–697 (2020). https://doi.org/10.1134/S1023193520050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520050092

Keywords:

Navigation