Skip to main content
Log in

Cobalt–Nickel Vanadate Nanonest Colonies Deposited Carbon Fabric as a Bifunctional Electrode for Li-Ion Batteries and Oxygen-Evolution Reactions

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Transition metal vanadates (TMVs) have attracted significant attention in various research fields owing to their advantageous features. Furthermore, synthesizing TMVs directly on current collectors at the nanoscale is a promising strategy for achieving better performance. Herein, cobalt–nickel vanadate (CoV2O6–Ni2V2O7, CNV) was directly grown on carbon fabric using a facile one-step hydrothermal method. In particular, the CNV sample prepared for 3 h (CNV-3) exhibited a benefit-enriched nanonest-colony morphology in which abundant nanowires (diameter: 10 nm) were intertwined, providing sufficient space for electrolyte diffusion. All the CNV electrodes exhibited good cycling performance in the lithium-ion battery study. Especially, the CNV-3 electrode retained higher discharge and charge capacities of 616 and 610 mAh g−1, respectively at the 100th cycle than the other two electrodes owing to several morphologic features. The electrocatalytic activity of all the CNV samples for the oxygen-evolution reaction (OER) was also explored in an alkaline electrolyte. Among these CNV catalysts, the CNV-3 displayed excellent OER performance and required an overpotential of only 270 mV to drive a current density of 10 mA cm−2. The Tafel slope of this catalyst was also found to be low (129 mV dec−1). Moreover, the catalyst exhibited excellent durability in a 24 h stability test. These results indicate that the metal vanadates with favorable nanostructures are highly suitable for both energy storage and water-splitting applications.

Graphical Abstract

CoV2O6–Ni2V2O7 material grown directly on carbon fabric as novel nanonest colonies demonstrated stable electrochemical response in both lithium-ion battery and oxygen-evolution reaction studies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Shodiev A, Zanotto FM, Yu J, Chouchane M, Li J, Franco AA. Designing electrode architectures to facilitate electrolyte infiltration for lithium-ion batteries. Energy Stor Mater. 2022;49:268.

    Google Scholar 

  2. Kwon H-T, Lee CK, Jeon K-J, Park C-M. Silicon diphosphide: A Si-based three-dimensional crystalline framework as a high-performance Li-ion battery anode. ACS Nano. 2016;10:5701.

    Article  CAS  PubMed  Google Scholar 

  3. Park M-G, Lee D-H, Jung H, Choi J-H, Park C-M. Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility. ACS Nano. 2018;12:2955.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Zhang P, Zhang S, Wang Z, Li N, Silva SRP, Shao G. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries. InfoMat. 2021;3:790.

    Article  CAS  Google Scholar 

  5. Zhang Y, Wu Z, Wang S, Li N, Silva SRP, Shao G, Zhang P. Complex permittivity-dependent plasma confinement-assisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li-S full cells. InfoMat. 2022;4: e12294.

    Article  CAS  Google Scholar 

  6. Zhang P, Zhao Y, Li Y, Li N, Silva SRP, Shao G, Zhang P. Revealing the selective bifunctional electrocatalytic sites via in situ irradiated X-ray photoelectron spectroscopy for lithium–sulfur battery. Adv Sci. 2023;10:2206786.

    Article  CAS  Google Scholar 

  7. Haro M, Singh V, Steinhauer S, Toulkeridou E, Grammatikopoulos P, Sowwan M. Nanoscale heterogeneity of multilayered Si anodes with embedded nanoparticle scaffolds for Li-ion batteries. Adv Sci. 2017;4:1700180.

    Article  Google Scholar 

  8. Mu X, Li X, Liao C, Yu H, Jin Y, Yu B, Han L, Chen L, Kan Y, Song L. Phosphorus-fixed stable interfacial nonflammable gel polymer electrolyte for safe flexible lithium-ion batteries. Adv Funct Mater. 2022;32:2203006.

    Article  CAS  Google Scholar 

  9. Ren J, Wang Z, Xu P, Wang C, Gao F, Zhao D, Liu S, Yang H, Wang D, Niu C. Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 2022;14:1.

    Article  Google Scholar 

  10. Hou R, Zhang S, Zhang Y, Li N, Wang S, Ding B, Shao G, Zhang P. A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium–sulfur batteries. Adv Funct Mater. 2022;32:2200302.

    Article  CAS  Google Scholar 

  11. Ye H, Xin S, Yin YX, Guo YG. Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater. 2017;7:1700530.

    Article  Google Scholar 

  12. Wen Z, Fang W, Wu X, Qin Z, Kang H, Chen L, Zhang N, Liu X, Chen G. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Adv Funct Mater. 2022;32:2204768.

    Article  CAS  Google Scholar 

  13. Song H, Eom K. Realizing superior energy in a full-cell LIB employing a Li-metal anode via the rational design of a Cu-scaffold host structure with an extremely high porosity. Energy Stor Mater. 2021;36:326.

    Google Scholar 

  14. Zhang N, Zhang Q, Zhang LY, Zhang JY, Fang YZ, Liu Z, Zhou M. Oxygen vacancy induced boosted visible-light driven photocatalytic CO2 reduction and electrochemical water oxidation over CuCo-ZIF@ Fe2O3@ CC architecture. Small Methods. 2022;6:2200308.

    Article  CAS  Google Scholar 

  15. Sekhar SC, Ramulu B, Han MH, Arbaz SJ, Nagaraju M, Oh HS, Yu JS. Unraveling CoNiP-CoP2 3D-on-1D hybrid nanoarchitecture for long-lasting electrochemical hybrid cells and oxygen evolution reaction. Adv Sci. 2022;9:2104877.

    Article  CAS  Google Scholar 

  16. Wang L, Li Y, Ai Y, Fan E, Zhang F, Zhang W, Shao G, Zhang P. Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS. Adv Funct Mater. 2023;33:2306466.

    Article  CAS  Google Scholar 

  17. Wang Z, Hao Z, Shi F, Zhu K, Zhu X, Yang W. Boosting the oxygen evolution reaction through migrating active sites from the bulk to surface of perovskite oxides. J Energy Chem. 2022;69:434.

    Article  CAS  Google Scholar 

  18. Sadaqat M, Nisar L, Hussain F, Ashiq MN, Shah A, Ehsan MF, Najam-Ul-Haq M, Joya KS. Zinc-telluride nanospheres as an efficient water oxidation electrocatalyst displaying a low overpotential for oxygen evolution. J Mater Chem A. 2019;7:26410.

    Article  CAS  Google Scholar 

  19. Sari FNI, Abdillah S, Ting J-M. FeOOH-containing hydrated layered iron vanadate electrocatalyst for superior oxygen evolution reaction and efficient water splitting. Chem Eng J. 2021;416: 129165.

    Article  Google Scholar 

  20. Shi Z, Yu Z, Jiang R, Huang J, Hou Y, Chen J, Zhang Y, Zhu H, Wang B, Pang H. MOF-derived M-OOH with rich oxygen defects by in situ electro-oxidation reconstitution for a highly efficient oxygen evolution reaction. J Mater Chem A. 2021;9:11415.

    Article  CAS  Google Scholar 

  21. Zand Z, Salimi P, Mohammadi MR, Bagheri R, Chernev P, Song Z, Dau H, Görlin M, Najafpour MM. Nickel–vanadium layered double hydroxide under water-oxidation reaction: new findings and challenges. ACS Sustain Chem Eng. 2019;7:17252.

    Article  CAS  Google Scholar 

  22. Liardet L, Hu X. Amorphous cobalt vanadium oxide as a highly active electrocatalyst for oxygen evolution. ACS Cat. 2018;8:644.

    Article  CAS  Google Scholar 

  23. Liu Y, Ye C, Zhao S-N, Wu Y, Liu C, Huang J, Xue L, Sun J, Zhang W, Wang X. A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction. Nano Energy. 2022;99: 107344.

    Article  CAS  Google Scholar 

  24. Li Y, Wang L, Zhang F, Zhang W, Shao G, Zhang P. Detecting and quantifying wavelength-dependent electrons transfer in heterostructure catalyst via in situ irradiation XPS. Adv Sci. 2023;10:2205020.

    Article  CAS  Google Scholar 

  25. Guan C, Liu X, Ren W, Li X, Cheng C, Wang J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater. 2017;7:1602391.

    Article  Google Scholar 

  26. Guan C, Liu X, Elshahawy AM, Zhang H, Wu H, Pennycook SJ, Wang J. Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horiz. 2017;2:342.

    Article  CAS  PubMed  Google Scholar 

  27. Ni S, Liu J, Chao D, Mai L. Vanadate-based Materials for Li-ion batteries: the search for anodes for practical applications. Adv Energy Mater. 2019;9:1803324.

    Article  Google Scholar 

  28. Zhu C, Liu Z, Wang J, Pu J, Wu W, Zhou Q, Zhang H. Novel Co2VO4 anodes using ultralight 3D metallic current collector and carbon sandwiched structures for high-performance Li-ion batteries. Small. 2017;13:1701260.

    Article  Google Scholar 

  29. Park E, So S, Hur J. Carbon-free hydrated cobalt vanadium oxide as a promising anode for lithium-ion batteries. Appl Surf Sci. 2022;579: 152182.

    Article  CAS  Google Scholar 

  30. Khan A, Ali B, Inayat A, Khan MR, Ahmad N, Akbar J, Nam KW, Abbas SM. Lithium-ion battery anode with high capacity retention derived from zinc vanadate and holey graphene. Int J Energy Res. 2022;46(8):11200–13.

    Article  CAS  Google Scholar 

  31. Zhang Q, Pei J, Chen G, Bie C, Chen D, Jiao Y, Rao J. Co3V2O8 hexagonal pyramid with tunable inner structure as high performance anode materials for lithium ion battery. Electrochim Acta. 2017;238:227.

    Article  CAS  Google Scholar 

  32. Sarkar A, Mitra S. Chemically sodiated ammonium vanadium oxide as a new generation high-performance cathode. J Power Sour. 2020;452: 227832.

    Article  CAS  Google Scholar 

  33. Ferrari VC, Kim NS, Lee SB, Rubloff GW, Stewart DM. Co-sputtering of lithium vanadium oxide thin films with variable lithium content to enable advanced solid-state batteries. J Mater Chem A. 2022;10:12518.

    Article  CAS  Google Scholar 

  34. Cheng F, Chen J. Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem. 2011;21:9841.

    Article  CAS  Google Scholar 

  35. Sorensen EM, Izumi HK, Vaughey JT, Stern CL, Poeppelmeier KR. Ag4V2O6F2: an electrochemically active and high silver density phase. J Am Chem Soc. 2005;127:6347.

    Article  CAS  PubMed  Google Scholar 

  36. Pang Z, Ding B, Wang J, Wang Y, Xu L, Zhou L, Jiang X, Yan X, Hill JP, Yu L. Metal-ion inserted vanadium oxide nanoribbons as high-performance cathodes for aqueous zinc-ion batteries. Chem Eng J. 2022;446: 136861.

    Article  Google Scholar 

  37. Xu X, Niu C, Duan M, Wang X, Huang L, Wang J, Pu L, Ren W, Shi C, Meng J. Alkaline earth metal vanadates as sodium-ion battery anodes. Nat Comm. 2017;8:1.

    Article  Google Scholar 

  38. Augustyn V, Dunn B. Low-potential lithium-ion reactivity of vanadium oxide aerogels. Electrochim acta. 2013;88:530.

    Article  CAS  Google Scholar 

  39. Sekhar SC, Ramulu B, Narsimulu D, Arbaz SJ, Yu JS. Metal-organic framework-derived Co3V2O8@CuV2O6 hybrid architecture as a multifunctional binder-free electrode for Li-ion batteries and hybrid supercapacitors. Small. 2020;16:2003983.

    Article  CAS  Google Scholar 

  40. Chandra Sekhar S, Nagaraju G, Narsimulu D, Ramulu B, Hussain SK, Yu JS. Graphene matrix sheathed metal vanadate porous nanospheres for enhanced longevity and high-rate energy storage devices. ACS Appl Mater Inter. 2020;12:27074.

    Article  CAS  Google Scholar 

  41. Lv C, Sun J, Chen G, Yan C, Chen D. Achieving Ni3V2O8 amorphous wire encapsulated in crystalline tube nanostructure as anode materials for lithium ion batteries. Nano Energy. 2017;33:138.

    Article  CAS  Google Scholar 

  42. Narsimulu D, Kakarla AK, Shanthappa R, Yu JS. Designing of carbon fiber cloth supported 3D porous nickel oxide composite as high-performance flexible anode for sodium-and lithium-ion batteries. J Mater Res Technol. 2022;17:3234.

    Article  CAS  Google Scholar 

  43. Zhang D, Li G, Li B, Fan J, Chen D, Liu X, Li L. Fast synthesis of Co1.8V1.2O4/rGO as a high-rate anode material for lithium-ion batteries. Chem Comm. 2018;54:7689.

    Article  CAS  PubMed  Google Scholar 

  44. Huang L, Zhang Y, Shang C, Wang X, Zhou G, Ou JZ, Wang Y. ZnS nanotubes/carbon cloth as a reversible and high-capacity anode material for lithium-ion batteries. ChemElectroChem. 2019;6:461.

    Article  CAS  Google Scholar 

  45. Wu F, Yu C, Liu W, Wang T, Feng J, Xiong S. Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J Mater Chem A. 2015;3:16728.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2018R1A6A1A03025708). We would like to thank Mr. Ashok Kumar Kakarla and Dr. Manikandan Ramu for their help during the revision.

Funding

National Research Foundation of Korea, 2018R1A6A1A03025708, Jae Su Yu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Su Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 19,559 KB)

Supplementary file2 (DOCX 505 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhar, S.C., Ramulu, B., Arbaz, S.J. et al. Cobalt–Nickel Vanadate Nanonest Colonies Deposited Carbon Fabric as a Bifunctional Electrode for Li-Ion Batteries and Oxygen-Evolution Reactions. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00419-3

Keywords

Navigation