Skip to main content
Log in

Furanocoumarins: History of Research, Diversity, Synthesis, Physiological Role in the Plant, and Medical Application

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The review is devoted to furanocoumarins, a class of substances that are a combination of pyrone, benzene, and furan rings, possessing a system of conjugated double bonds (which in some cases can be disrupted). This group of compounds is currently being widely studied due to its phototoxic and medicinal properties. The work examines furanocoumarins of natural origin, identified in the family Umbelliferae, or Apiaceae, their diversity is structured; the history of their study, the currently known stages of their biosynthesis, and examples of their biological activity in plants, cell culture and for medical use are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kuznetsova, G.A., Prirodnye kumariny i furokumariny (Natural Coumarins and Furocoumarins), Leningrad: Nauka, 1967.

    Google Scholar 

  2. Pimenov, M.G., Perechen’ rastenii-istochnikov kumarinovykh soedinenii (List of Plant Sources of Coumarin Compounds), Leningrad: Nauka, 1971.

    Google Scholar 

  3. Malikov, V.M., Saidkhodzhaev, A.I., and Aripov, Kh.N., Coumarins: Plants, structure, properties. Chapter I., Chem. Nat. Compd., 1998, vol. 34, p. 202. https://doi.org/10.1007/BF02249149

    Article  CAS  Google Scholar 

  4. Murray, R.D.H., Naturally occurring coumarins, Fortschritte der Chemie organischer Naturstoffe, in Progress in the Chemistry of Organic Natural Products, Herz, W., Eds., Vienna: Springer Vienna, 2002, vol. 83, p. 1. https://doi.org/10.1007/978-3-7091-6172-2_1

    Book  Google Scholar 

  5. Bruni, R., Barreca, D., Protti, M., Brighenti, V., Righetti, L., Anceschi, L., Mercolini, L., Benvenuti, S., Gattuso, G., and Pellati, F., Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest, Molecules, 2019, vol. 24, p. 2163. https://doi.org/10.3390/molecules24112163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarker, S.D. and Nahar, L., Progress in the chemistry of naturally occurring coumarins, Progress in the Chemistry of Organic Natural Products 106, Kinghorn, A.D., Ed., Springer International Publishing, 2017, vol. 106, p. 241. https://doi.org/10.1007/978-3-319-59542-9_3

    Book  Google Scholar 

  7. Schlatter, C.H., Ueber Peucedaninum, einen neuen eigenthümlichen Pflanzenstoff aus der Rad. Peucedani, Ann. Pharm., 1833, vol. 5, p. 201. https://doi.org/10.1002/jlac.18330050209

    Article  Google Scholar 

  8. Ohme, C., Ueber die Zusammensetzung des Bergamottöls, Ann. Pharm., 1839, vol. 31, p. 316. https://doi.org/10.1002/jlac.18390310309

    Article  Google Scholar 

  9. Schnedermann, G. and Winckler, F.L., Ueber das Athamantin, Ann. Chem. Pharm., 1844, vol. 51, p. 315. https://doi.org/10.1002/jlac.18440510303

    Article  Google Scholar 

  10. Kadyrova, F.R., Shamsutdinov, M.I., Shakirov, T.T., Abubakirov, N.K., Usmanov, B.Z., Khamidkhodzhaev, S.A., Sultanov, M.B., and Khanov, M.T., SU Patent 591188, 1978.

  11. Zhu, C., CN Patent 1839922, 2006.

  12. Chen, J., Huang, A., Ren, F., Cheng, S., and Ren, J., CN Patent 113069445, 2021.

  13. Rui, Y., Li, T., Qiu, Y., and Chu, Z., CN Patent 1380059, 2002.

  14. Sin, K.H., WO Patent 9401106, 1994.

  15. Yu, F., CN Patent 103948036, 2014.

  16. Chang, Y., Wang, Y., Li, J., He, J., Pang, X., Liu, R., Chen, S., and Liang, C., CN Patent 112791082, 2021.

  17. Liang, Q., Wang, Y., Wang, Q., Xu, H., Shi, Q., Wang, T., Qi, X., Jia, Q., Wang, Y., Liu, Y., Wang, X., Xu, C., Liu, L., Zhang, L., Liu, S., et al., CN Patent 109091477, 2018.

  18. Rodrigues, J.L., Gomes, D., and Rodrigues, L.R., Challenges in the heterologous production of furanocoumarins in Escherichia coli, Molecules, 2022, vol. 27, p. 7230. https://doi.org/10.3390/molecules27217230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, Y., Jian, X., Wu, J., Huang, W., Huang, C., Luo, J., and Kong, L., Elucidation of the biosynthesis pathway and heterologous construction of a sustainable route for producing umbelliferone, J. Biol. Eng., 2019, vol. 13, p. 44. https://doi.org/10.1186/s13036-019-0174-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, W.-Q., Song, Y.-L., Zhu, Z.-X., Su, C., Zhang, X., Wang, J., Shi, S.-P., and Tu, P.-F., Anti-inflammatory dimeric furanocoumarins from the roots of Angelica dahurica, Fitoterapia, 2015, vol. 105, p. 187. https://doi.org/10.1016/j.fitote.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  21. Stanjek, V. and Boland, W., Biosynthesis of angular furanocoumarins: mechanism and stereochemistry of the oxidative dealkylation of columbianetin to angelicin in Heracleum mantegazzianum (Apiaceae), HCA, 1998, vol. 81, p. 1596. https://doi.org/10.1002/(SICI)1522-2675(19980909)81:9<1596::AID-HLCA1596>3.0.CO;2-F

    Article  CAS  Google Scholar 

  22. Dugrand-Judek, A., Olry, A., Hehn, A., Costantino, G., Ollitrault, P., Froelicher, Y., and Bourgaud, F., The distribution of coumarins and furanocoumarins in Citrus species closely matches citrus phylogeny and reflects the organization of biosynthetic pathways, PLoS One, 2015, vol. 10, p. e0142757. https://doi.org/10.1371/journal.pone.0142757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park, J.H., Park, N.I., Xu, H., and Park, S.U., Cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase and pyranocoumarin biosynthesis in Angelica gigas, J. Nat. Prod., 2010, vol. 73, p. 1394. https://doi.org/10.1021/np1003356

    Article  CAS  PubMed  Google Scholar 

  24. Sui, Z., Luo, J., Yao, R., Huang, C., Zhao, Y., and Kong, L., Functional characterization and correlation analysis of phenylalanine ammonia-lyase (PAL) in coumarin biosynthesis from Peucedanum praeruptorum Dunn, Phytochem., 2019, vol. 158, p. 35. https://doi.org/10.1016/j.phytochem.2018.11.006

    Article  CAS  Google Scholar 

  25. Gravot, A., Larbat, R., Hehn, A., Lièvre, K., Gontier, E., Goergen, J.-L., and Bourgaud, F., Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant—Ruta graveolens—exhibiting low sensitivity to psoralen inactivation, Arch. Biochem. Biophys., 2004, vol. 422, p. 71. https://doi.org/10.1016/j.abb.2003.12.013

    Article  CAS  PubMed  Google Scholar 

  26. Hübner, S., Hehmann, M., Schreiner, S., Martens, S., Lukačin, R., and Matern, U., Functional expression of cinnamate 4-hydroxylase from Ammi majus L., Phytochem., 2003, vol. 64, p. 445. https://doi.org/10.1016/S0031-9422(03)00265-6

    Article  CAS  Google Scholar 

  27. Liu, T., Yao, R., Zhao, Y., Xu, S., Huang, C., Luo, J., and Kong, L., Cloning, functional characterization and site-directed mutagenesis of 4-coumarate: coenzyme A ligase (4CL) involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn, Front. Plant Sci., 2017, vol. 8. https://doi.org/10.3389/fpls.2017.00004

  28. Vialart, G., Hehn, A., Olry, A., Ito, K., Krieger, C., Larbat, R., Paris, C., Shimizu, B., Sugimoto, Y., Mizutani, M., and Bourgaud, F., A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2′-hydroxylase activity (C2′H): a missing step in the synthesis of umbelliferone in plants: C2′H involved in umbelliferone synthesis, The Plant J., 2012, vol. 70, p. 460. https://doi.org/10.1111/j.1365-313X.2011.04879.x

    Article  CAS  PubMed  Google Scholar 

  29. Yao, R., Zhao, Y., Liu, T., Huang, C., Xu, S., Sui, Z., Luo, J., and Kong, L., Identification and functional characterization of a p-coumaroyl CoA 2′-hydroxylase involved in the biosynthesis of coumarin skeleton from Peucedanum praeruptorum Dunn, Plant Mol. Biol., 2017, vol. 95, p. 199. https://doi.org/10.1007/s11103-017-0650-4

    Article  CAS  PubMed  Google Scholar 

  30. Roselli, S., Olry, A., Vautrin, S., Coriton, O., Ritchie, D., Galati, G., Navrot, N., Krieger, C., Vialart, G., Bergès, H., Bourgaud, F., and Hehn, A., A bacterial artificial chromosome (BAC) genomic approach reveals partial clustering of the furanocoumarin pathway genes in parsnip, Plant J., 2017, vol. 89, p. 1119. https://doi.org/10.1111/tpj.13450

    Article  CAS  PubMed  Google Scholar 

  31. Bourgaud, F., Olry, A., and Hehn, A., Recent advances in molecular genetics of furanocoumarin synthesis in higher plants, in Recent Advances in Redox Active Plant and Microbial Products: From Basic Chemistry to Widespread Applications in Medicine and Agriculture, Jacob, C., Ed., Dordrecht: Springer Netherlands, 2014, p. 363. https://doi.org/10.1007/978-94-017-8953-0_14

    Book  Google Scholar 

  32. Caporale, G., Dall’Acqua, F., Marciani, S., and Capozzi, A., Studies on the biosynthesis of psoralen and bergapten in the leaves of Ficus carica, Z. Naturforsch. B., 1970, vol. 25, p. 700. https://doi.org/10.1515/znb-1970-0709

    Article  CAS  Google Scholar 

  33. Steck, W. and Brown, S.A., Biosynthesis of angular furanocoumarins, Can. J. Biochem., 1970, vol. 48, p. 872. https://doi.org/10.1139/o70-137

    Article  CAS  PubMed  Google Scholar 

  34. Innocenti, G., Dall’Acqua, F., and Caporale, G., Biosynthesis of linear furocoumarins: further studies on the role of 7-dimethylsuberosin, Atti Ist. Veneto Sci., Lett. Arti, Cl. Sci. Mat. Nat., 1979, vol. 137, p. 219.

    CAS  Google Scholar 

  35. Brown, S.A. and Steck, W., 7-Demethylsuberosin and osthenol as intermediates in furanocoumarin biosynthesis, Phytochem., 1973, vol. 12, p. 1315. https://doi.org/10.1016/0031-9422(73)80558-8

    Article  CAS  Google Scholar 

  36. Brown, S.A., El-Dakhakhny, M., and Steck, W., Biosynthesis of linear furanocoumarins, Can. J. Biochem., 1970, vol. 48, p. 863. https://doi.org/10.1139/o70-136

    Article  CAS  PubMed  Google Scholar 

  37. Hamerski, D. and Matern, U., Elicitor-induced biosynthesis of psoralens in Ammi majus L. suspension cultures. Microsomal conversion of demethylsuberosin into (+)-marmesin and psoralen, Eur. J. Biochem., 1988, vol. 171, p. 369. https://doi.org/10.1111/j.1432-1033.1988.tb13800.x

    Article  CAS  PubMed  Google Scholar 

  38. Ellis, B.E. and Brown, S.A., Isolation of dimethylallylpyrophosphate:umbelliferone dimethylallyltransferase from Ruta graveolens, Can. J. Biochem., 1974, vol. 52, p. 734. https://doi.org/10.1139/o74-104

    Article  CAS  PubMed  Google Scholar 

  39. Karamat, F., Olry, A., Munakata, R., Koeduka, T., Sugiyama, A., Paris, C., Hehn, A., Bourgaud, F., and Yazaki, K., A coumarin-specific prenyltransferase catalyzes the crucial biosynthetic reaction for furanocoumarin formation in parsley, Plant J., 2014, vol. 77, p. 627. https://doi.org/10.1111/tpj.12409

    Article  CAS  PubMed  Google Scholar 

  40. Munakata, R., Olry, A., Karamat, F., Courdavault, V., Sugiyama, A., Date, Y., Krieger, C., Silie, P., Foureau, E., Papon, N., Grosjean, J., Yazaki, K., Bourgaud, F., and Hehn, A., Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis, New Phytol., 2016, vol. 211, p. 332. https://doi.org/10.1111/nph.13899

    Article  CAS  PubMed  Google Scholar 

  41. Munakata, R., Kitajima, S., Nuttens, A., Tatsumi, K., Takemura, T., Ichino, T., Galati, G., Vautrin, S., Bergès, H., Grosjean, J., Bourgaud, F., Sugiyama, A., Hehn, A., and Yazaki, K., Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants, New Phytol., 2020, vol. 225, p. 2166. https://doi.org/10.1111/nph.16277

    Article  CAS  PubMed  Google Scholar 

  42. Han, L., Zhang, L., He, Y., Liao, L., Li, J., Xu, S., Zhao, Y., Bian, X., and Xia, Y., Three carbon-/oxygen-prenyltransferases responsible for furanocoumarin synthesis in Angelica dahurica, Ind. Crop. Prod., 2023, vol. 200, p. 116814. https://doi.org/10.1016/j.indcrop.2023.116814

    Article  CAS  Google Scholar 

  43. Larbat, R., Kellner, S., Specker, S., Hehn, A., Gontier, E., Hans, J., Bourgaud, F., and Matern, U., Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis, J. Biol. Chem., 2007, vol. 282, p. 542. https://doi.org/10.1074/jbc.M604762200

    Article  CAS  PubMed  Google Scholar 

  44. Larbat, R., Hehn, A., Hans, J., Schneider, S., Jugdé, H., Schneider, B., Matern, U., and Bourgaud, F., Isolation and functional characterization of CYP71AJ4 encoding for the first P450 monooxygenase of angular furanocoumarin biosynthesis, J. Biol. Chem., 2009, vol. 284, p. 4776. https://doi.org/10.1074/jbc.M807351200

    Article  CAS  PubMed  Google Scholar 

  45. Dueholm, B., Krieger, C., Drew, D., Olry, A., Kamo, T., Taboureau, O., Weitzel, C., Bourgaud, F., Hehn, A., and Simonsen, H.T., Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily, BMC Evol Biol., 2015, vol. 15, p. 122. https://doi.org/10.1186/s12862-015-0396-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jian, X., Zhao, Y., Wang, Z., Li, S., Li, L., Luo, J., and Kong, L., Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum Dunn, Plant Mol. Biol., 2020, vol. 104, p. 327. https://doi.org/10.1007/s11103-020-01045-4

    Article  CAS  PubMed  Google Scholar 

  47. Ren, H., Yu, Y., Xu, Y., Zhang, X., Tian, X., and Gao, T., GlPS1 overexpression accumulates coumarin secondary metabolites in transgenic Arabidopsis, Plant Cell Tiss. Organ., 2023, vol. 152, p. 539. https://doi.org/10.1007/s11240-022-02427-w

    Article  CAS  Google Scholar 

  48. Villard, C., Munakata, R., Kitajima, S., Velzen, R., Schranz, M.E., Larbat, R., and Hehn, A., A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution, New Phytol., 2021, vol. 231, p. 1923. https://doi.org/10.1111/nph.17458

    Article  CAS  PubMed  Google Scholar 

  49. Bourgaud, F., Hehn, A., Larbat, R., Doerper, S., Gontier, E., Kellner, S., and Matern, U., Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes, Phytochem. Rev., 2006, vol. 5, p. 293. https://doi.org/10.1007/s11101-006-9040-2

    Article  CAS  Google Scholar 

  50. Brown, S.A. and Sampathkumar, S., The biosynthesis of isopimpinellin, Can. J. Biochem., 1977, vol. 55, p. 686. https://doi.org/10.1139/o77-099

    Article  CAS  PubMed  Google Scholar 

  51. Caporale, G., Innocenti, G., Guiotto, A., Rodighiero, P., and Dall’Acqua, F., Biogenesis of linear O-alkylfuranocoumarins: A new pathway involving 5-hydroxymarmesin, Phytochem., 1981, vol. 20, p. 1283. https://doi.org/10.1016/0031-9422(81)80022-2

    Article  CAS  Google Scholar 

  52. Dall’Acqua, F., Capozzi, A., Marciani, S., and Caporale, G., Biosynthesis of furocoumarins: further studies on Ruta graveolens, Z. Naturforsch. B., 1972, vol. 27, p. 813. https://doi.org/10.1515/znb-1972-0717

    Article  PubMed  Google Scholar 

  53. Hamerski, D. and Matern, U., Biosynthesis of psoralens. Psoralen 5-monooxygenase activity from elicitor-treated Ammi majus cells, FEBS Lett., 1988, vol. 230, p. 263. https://doi.org/10.1016/0014-5793(88)80930-X

    Article  Google Scholar 

  54. Krieger, C., Roselli, S., Kellner-Thielmann, S., Galati, G., Schneider, B., Grosjean, J., Olry, A., Ritchie, D., Matern, U., Bourgaud, F., and Hehn, A., The CYP71AZ P450 subfamily: A driving factor for the diversification of coumarin biosynthesis in Apiaceous plants, Front. Plant Sci., 2018, vol. 9, p. 820. https://doi.org/10.3389/fpls.2018.00820

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hehmann, M., Lukačin, R., Ekiert, H., and Matern, U., Furanocoumarin biosynthesis in Ammi majus L.: Cloning of bergaptol O-methyltransferase, Eur. J. Biochem., 2004, vol. 271, p. 932. https://doi.org/10.1111/j.1432-1033.2004.03995.x

    Article  CAS  PubMed  Google Scholar 

  56. Ishikawa, A., Kuma, T., Sasaki, H., Sasaki, N., Ozeki, Y., Kobayashi, N., and Kitamura, Y., Constitutive expression of bergaptol O-methyltransferase in Glehnia littoralis cell cultures, Plant Cell Rep., 2009, vol. 28, p. 257. https://doi.org/10.1007/s00299-008-0631-9

    Article  CAS  PubMed  Google Scholar 

  57. Lo, S.-C., Chung, P.-E., and Wang, C.-S., Molecular cloning and functional analysis of bergaptol-O-methyltransferase from Angelica dahurica (Bai Zhi) and using it to efficiently produce bergapten in E. coli., Bot. Stud., 2012, vol. 53, p. 197.

    CAS  Google Scholar 

  58. Zhao, Y., Wang, N., Zeng, Z., Xu, S., Huang, C., Wang, W., Liu, T., Luo, J., and Kong, L., Cloning, functional characterization, and catalytic mechanism of a bergaptol O-methyltransferase from Peucedanum praeruptorum Dunn, Front. Plant Sci., 2016, vol. 7, p. 722. https://doi.org/10.3389/fpls.2016.00722

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhao, Y., Wang, N., Wu, H., Zhou, Y., Huang, C., Luo, J., Zeng, Z., and Kong, L., Structure-based tailoring of the first coumarins-specific bergaptol O‑methyltransferase to synthesize bergapten for depigmentation disorder treatment, J. Adv. Res., 2020, vol. 21, p. 57. https://doi.org/10.1016/j.jare.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, Y., Bai, P., Zhuang, Y., and Liu, T., Two O‑methyltransferases mediate multiple methylation steps in the biosynthesis of coumarins in Cnidium monnieri, J. Nat. Prod., 2022, vol. 85, p. 2116. https://doi.org/10.1021/acs.jnatprod.2c00410

    Article  CAS  PubMed  Google Scholar 

  61. Innocenti, G., Dall’Acqua, F., and Caporale, G., The role of 5,8-dihydroxypsoralen in the biosynthesis of isopimpinellin, Phytochem., 1983, vol. 22, p. 2207. https://doi.org/10.1016/S0031-9422(00)80148-X

    Article  CAS  Google Scholar 

  62. Satsyperova, I.F. and Komissarenko, N.F., Chemosystematics of the genus Heracleum L. of the USSR flora. Post 3. Section Wendia (Hoffm.) Manden. and Apiifolia Manden.; biosynthesis of coumarins and evolution of the genus, Rast. resur., 1978, vol. 14, p. 482.

    Google Scholar 

  63. Floss, H.-G. and Mothes, U., On the biosynthesis of furocoumarins in Pimpinella magna, Phytochemistry, 1966, vol. 5, p. 161. https://doi.org/10.1016/S0031-9422(00)85094-3

    Article  CAS  Google Scholar 

  64. Dall’Acqua, F., Innocenti, G., and Caporale, G., Biosynthesis of O-alkyl-furocoumarins, Planta Med., 1975, vol. 27, p. 343. https://doi.org/10.1055/s-0028-1097812

    Article  PubMed  Google Scholar 

  65. Innocenti, G., Dall’Acqua, F., Rodighiero, P., and Caporale, G., Biosynthesis of O–alkylfurocoumarins in Angelica archangelica, Planta Med., 1978, vol. 34, p. 167. https://doi.org/10.1055/s-0028-1097429

    Article  CAS  Google Scholar 

  66. Munakata, R., Olry, A., Takemura, T., Tatsumi, K., Ichino, T., Villard, C., Kageyama, J., Kurata, T., Nakayasu, M., Jacob, F., Koeduka, T., Yamamoto, H., Moriyoshi, E., Matsukawa, T., Grosjean, J., et al., Parallel evolution of UbiA superfamily proteins into aromatic O -prenyltransferases in plants, P. Natl. Acad. Sci. USA, 2021, vol. 118, p. e2022294118. https://doi.org/10.1073/pnas.2022294118

    Article  CAS  Google Scholar 

  67. Denisova, G.A. and Dranitsyna, Yu.A., Localization of coumarin compounds in fruit and root tissues of Archangelica decurrens LDB., Bot. Zh., 1963, vol. 48, p. 1830.

    Google Scholar 

  68. Denisova, G.A. and Kerimov, S.Sh., Localization of coumarin compounds in fruit and root tissues of Hippomarathrum microcarpum (Bieb.) B. Fedtsch., Rast. Resur., 1966, vol. 2, p. 182.

    Google Scholar 

  69. Denisova, G.A. and Florya, V.N., Localization of coumarin compounds in various organs and tissues of Seseli campestre Bess., Rast. Resur., 1970, vol. 6, p. 337.

    CAS  Google Scholar 

  70. Camm, E.L., Wat, C.-K., and Towers, G.H.N., An assessment of the roles of furanocoumarins in Heracleum lanatum, Can. J. Bot., 1976, vol. 54, p. 2562. https://doi.org/10.1139/b76-275

    Article  CAS  Google Scholar 

  71. Jahnen, W. and Hahlbrock, K., Differential regulation and tissue-specific distribution of enzymes of phenylpropanoid pathways in developing parsley seedlings, Planta, 1988, vol. 173, p. 453. https://doi.org/10.1007/BF00958957

    Article  CAS  PubMed  Google Scholar 

  72. Zobel, A., Brown, S., and Glowniak, K., Localization of furanocoumarins in leaves, fruits, and seeds of plants causing contact photodermatitis, Planta Med., 1990, vol. 56, p. 571. https://doi.org/10.1055/s-2006-961167

    Article  Google Scholar 

  73. Zobel, A. and March, R.E., Autofluorescence reveals different histological localizations of furanocoumarins in fruit of some Umbelliferae and Leguminosae, Ann. Bot., 1993, vol. 71, p. 251. https://doi.org/10.1006/anbo.1993.1032

    Article  CAS  Google Scholar 

  74. Zobel, A.M. and Brown, S.A., Furanocoumarin concentrations in fruits and seeds of Angelica archangelica, Environ. Exp. Bot., 1991, vol. 31, p. 447. https://doi.org/10.1016/0098-8472(91)90043-N

    Article  CAS  Google Scholar 

  75. Zobel, A.M. and Brown, S.A., Furanocoumarins on the surface of callus cultures from species of the Rutaceae and Umbelliferae, Can. J. Bot., 1993, vol. 71, p. 966. https://doi.org/10.1139/b93-109

    Article  CAS  Google Scholar 

  76. Weryszko-Chmielewska, E. and Chwil, M., Localisation of furanocoumarins in the tissues and on the surface of shoots of Heracleum sosnowskyi, Botany, 2017, vol. 95, p. 1057. https://doi.org/10.1139/cjb-2017-0043

    Article  CAS  Google Scholar 

  77. Gao, H. and Li, Q., Study on the spatial distribution of coumarins in Angelica dahurica root by MALDI-TOF-MSI, Phytochem. Anal., 2022, p. 139. https://doi.org/10.1002/pca.3186

  78. Lohr, C., Raquet, N., and Schrenk, D., Application of the concept of relative photomutagenic potencies to selected furocoumarins in V79 cells, Toxicol. in Vitro, 2010, vol. 24, p. 558. https://doi.org/10.1016/j.tiv.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  79. Raquet, N. and Schrenk, D., Relative photomutagenicity of furocoumarins and limettin in the hypoxanthine phosphoribosyl transferase assay in v79 cells, Chem. Res. Toxicol., 2009, vol. 22, p. 1639. https://doi.org/10.1021/tx9002287

    Article  CAS  PubMed  Google Scholar 

  80. Pathak, M.A. and Joshi, P.C., Production of active oxygen species (1O2 and O2 ) by psoralens and ultraviolet radiation (320–400 nm), BBA-Gen. Subjects, 1984, vol. 798, p. 115. https://doi.org/10.1016/0304-4165(84)90018-7

    Article  CAS  Google Scholar 

  81. Melough, M.M., Cho, E., and Chun, O.K., Furocoumarins: A review of biochemical activities, dietary sources and intake, and potential health risks, Food Chem. Toxicol., 2018, vol. 113, p. 99. https://doi.org/10.1016/j.fct.2018.01.030

    Article  CAS  PubMed  Google Scholar 

  82. Rzymski, P., Klimaszyk, P., Poniedziałek, B., and Karczewski, J., Health threat associated with Caucasian giant hogweeds: awareness among doctors and general public in Poland, Cutan. Ocul. Toxicol., 2015, vol. 34, p. 203. https://doi.org/10.3109/15569527.2014.948685

    Article  PubMed  Google Scholar 

  83. Stegelmeier, B.L., Colegate, S.M., Knoppel, E.L., Rood, K.A., and Collett, M.G., Wild parsnip (Pastinaca sativa)-induced photosensitization, Toxicon, 2019, vol. 167, p. 60. https://doi.org/10.1016/j.toxicon.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  84. Vichkanova, S.A., Rubinchik, M.A., Adgina, V.V., Izosimova, S.B., Makarov, L.V., Shipulina, L.D., and Goryunova, L.V. ., Antimicrobial and antiviral activity of some natural coumarins, Rast. Resur., 1973, vol. 9, p. 370.

    Google Scholar 

  85. Oueslati, M.H., Guetat, A., Bouajila, J., Alzahrani, A.K., and Basha, J., Deverra tortuosa (Desf.) DC from Saudi Arabia as a new source of marmin and furanocoumarins derivatives with α-glucosidase, antibacterial and cytotoxic activities, Heliyon., 2021, vol. 7, p. e06656. https://doi.org/10.1016/j.heliyon.2021.e06656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Golfakhrabadi, F., Shams Ardakani, M.R., Saeidnia, S., Akbarzadeh, T., Yousefbeyk, F., Jamalifar, H., and Khanavi, M., In vitro antimicrobial and acetylcholinesterase inhibitory activities of coumarins from Ferulago carduchorum, Med. Chem. Res., 2016, vol. 25, p. 1623. https://doi.org/10.1007/s00044-016-1595-x

    Article  CAS  Google Scholar 

  87. Karakaya, S., Şimşek, D., Özbek, H., Güvenalp, Z., Altanlar, N., Kazaz, C., and Kiliç, C.S., Antimicrobial activities of extracts and isolated coumarins from the roots of four Ferulago apecies growing in Turkey, Iran J. Pharm. Res., 2019, vol. 18, p. 1516. https://doi.org/10.22037/ijpr.2019.1100718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rajtar, B., Skalicka-Woźniak, K., Świątek, Ł., Stec, A., Boguszewska, A., and Polz-Dacewicz, M., Antiviral effect of compounds derived from Angelica archangelica L. on Herpes simplex virus-1 and Coxsackievirus B3 infections, Food Chem. Toxicol., 2017, vol. 109, p. 1026. https://doi.org/10.1016/j.fct.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  89. Lee, B.W., Ha, T.K.Q., Cho, H.M., An, J.-P., Kim, S.K., Kim, C.-S., Kim, E., and Oh, W.K., Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2, J. Ethnopharmacol., 2020, vol. 259, p. 112945. https://doi.org/10.1016/j.jep.2020.112945

    Article  CAS  PubMed  Google Scholar 

  90. Cho, H.-J., Jeong, S.-G., Park, J.-E., Han, J.-A., Kang, H.-R., Lee, D., and Song, M.J., Antiviral activity of angelicin against gammaherpesviruses, Antivir. Res., 2013, vol. 100, p. 75. https://doi.org/10.1016/j.antiviral.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  91. Yajima, T. and Munakata, K., Phloroglucinol-type furocoumarins, a group of potent naturally-occurring insect antifeedants, Agr. Bio. Chem., 1979, vol. 43, p. 1701. https://doi.org/10.1080/00021369.1979.10863698

    Article  CAS  Google Scholar 

  92. Muckensturm, B., Duplay, D., Robert, P.C., Simonis, M.T., and Kienlen, J.-C., Substances antiappétantes pour insectes phytophages présentes dans Angelica silvestris et Heracleum sphondylium, Biochem. Syst. Ecol., 1981, vol. 9, p. 289. https://doi.org/10.1016/0305-1978(81)90010-7

    Article  CAS  Google Scholar 

  93. Berenbaum, M.R., Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.), Oecologia, 1981, vol. 49, p. 236. https://doi.org/10.1007/BF00349195

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Ode, P.J., Berenbaum, M.R., Zangerl, A.R., and Hardy, I.C.W., Host plant, host plant chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction, Oikos., 2004, vol. 104, p. 388. https://doi.org/10.1111/j.0030-1299.2004.12323.x

    Article  ADS  CAS  Google Scholar 

  95. Jogesh, T., Stanley, M.C., and Berenbaum, M.R., Evolution of tolerance in an invasive weed after reassociation with its specialist herbivore, J. Evol. Biol., 2014, vol. 27, p. 2334. https://doi.org/10.1111/jeb.12469

    Article  CAS  PubMed  Google Scholar 

  96. Lois, R. and Hahlbrock, K., Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate: coa ligase gene families in various organs of parsley plants, Z. Naturforsch. C., 1992, vol. 47, p. 90. https://doi.org/10.1515/znc-1992-1-216

    Article  CAS  PubMed  Google Scholar 

  97. Schmelzer, E., Kruger-Lebus, S., and Hahlbrock, K., Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves, Plant Cell, 1989, vol.1, p. 993. https://doi.org/10.1105/tpc.1.10.993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jahnen, W. and Hahlbrock, K., Cellular localization of nonhost resistance reactions of parsley (Petroselinum crispum) to fungal infection, Planta, 1988, vol. 173, p. 197. https://doi.org/10.1007/BF00403011

    Article  CAS  PubMed  Google Scholar 

  99. Ellard-Ivey, M. and Douglas, C.J., Role of jasmonates in the elicitor- and wound-inducible expression of defense genes in parsley and transgenic tobacco, Plant Physiol., 1996, vol. 112, p. 183. https://doi.org/10.1104/pp.112.1.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kitamura, Y., Ikenaga, T., Ooe, Y., Hiraoka, N., and Mizukami, H., Induction of furanocoumarin biosynthesis in Glehnia littoralis cell suspension cultures by elicitor treatment, Phytochem., 1998, vol. 48, p. 113. https://doi.org/10.1016/s0031-9422(97)00849-2

    Article  CAS  Google Scholar 

  101. Hamerski, D., Schmitt, D., and Matern, U., Induction of two prenyltransferases for the accumulation of coumarin phytoalexins in elicitor-treated Ammi majus cell suspension cultures, Phytochemistry, 1990, vol. 29, p. 1131. https://doi.org/10.1016/0031-9422(90)85417-E

    Article  CAS  PubMed  Google Scholar 

  102. Parast, B.M., Chetri, S.K., Sharma, K., and Agrawal, V., In vitro isolation, elicitation of psoralen in callus cultures of Psoralea corylifolia and cloning of psoralen synthase gene, Plant Physiol. Bioch., 2011, vol. 49, p. 1138. https://doi.org/10.1016/j.plaphy.2011.03.017

    Article  CAS  Google Scholar 

  103. Wendorff, H. and Matern, U., Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi. Microsomal conversion of (+)marmesin into psoralen, Eur. J. Biochem., 1986, vol. 161, p. 391. https://doi.org/10.1111/j.1432-1033.1986.tb10458.x

    Article  CAS  PubMed  Google Scholar 

  104. Sumorek-Wiadro, J., Zając, A., Maciejczyk, A., and Jakubowicz-Gil, J., Furanocoumarins in anticancer therapy—For and against, Fitoterapia, 2020, vol. 142, p. 104492. https://doi.org/10.1016/j.fitote.2020.104492

    Article  CAS  PubMed  Google Scholar 

  105. Elkhawaga, O.Y., Ellety, M.M., Mofty, S.O., Ghanem, M.S., and Mohamed, A.O., Review of natural compounds for potential psoriasis treatment, Inflammopharm., 2023, vol. 31, p. 1183. https://doi.org/10.1007/s10787-023-01178-0

    Article  CAS  Google Scholar 

  106. Ahmed, S., Khan, H., Aschner, M., Mirzae, H., Kupeli Akkol, E., and Capasso, R., Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects, IJMS, 2020, vol. 21, p. 5622. https://doi.org/10.3390/ijms21165622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wasserman, G.A., Llewellyn, M.W., Ramsay, C.A., and Haberman, H.F., Treatment of psoriasis with orally administered 8-methoxypsoralen and long-wavelength ultraviolet radiation, Can. Med. Assoc. J., 1978, vol. 118, p. 1379

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Couperus, M., Ammoidin (xanthotoxin) in the treatment of vitiligo, Calif. Med., 1954, vol. 81, p. 402

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Almutawa, F., Alnomair, N., Wang, Y., Hamzavi, I., and Lim, H.W., Systematic review of uv-based therapy for psoriasis, Am. J. Clin. Dermatol., 2013, vol. 14, p. 87. https://doi.org/10.1007/s40257-013-0015-y

    Article  PubMed  Google Scholar 

  110. Quintão, W.D.S.C., Alencar-Silva, T., Borin, M.D.F., Rezende, K.R., Albernaz, L.C., Cunha-Filho, M., Gratieri, T., De Carvalho, J.L., Sá-Barreto, L.C.L., and Gelfuso, G.M., Microemulsions incorporating Brosimum gaudichaudii extracts as a topical treatment for vitiligo: In vitro stimulation of melanocyte migration and pigmentation, J. Mol. Liq., 2019, vol. 294, p. 111685. https://doi.org/10.1016/j.molliq.2019.111685

    Article  CAS  Google Scholar 

  111. Dasari, S., Choudhary, A., and Madke, B., Psoriasis: a primer for general physicians, Cureus, 2023, vol. 15(4), p. e38037. https://doi.org/10.7759/cureus.38037

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pang, Y., Wu, S., He, Y., Nian, Q., Lei, J., Yao, Y., Guo, J., and Zeng, J., Plant-derived compounds as promising therapeutics for vitiligo, Front. Pharmacol., 2021, vol. 12, p. 685116. https://doi.org/10.3389/fphar.2021.685116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nikonov, G.K., Furanocoumarins as a group of plant-derived substances with anticancer activity, Tr. VILAR, 1959, vol. XI, p. 180.

    Google Scholar 

  114. Tsetlin, A.L., Nikonov, G.K., Shvarev, I.F., and Pimenov, M.G., On the issue of antitumor activity of natural coumarins, Rast. Resur., 1965, vol. C, p. 507.

    Google Scholar 

  115. De Amicis, F., Aquila, S., Morelli, C., Guido, C., Santoro, M., Perrotta, I., Mauro, L., Giordano, F., Nigro, A., Andò, S., and Panno, M.L., Bergapten drives autophagy through the up-regulation of PTEN expression in breast cancer cells, Mol. Cancer, 2015, vol. 14, p. 130. https://doi.org/10.1186/s12943-015-0403-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, X., Cheng, K., Han, Y., Zhang, G., Dong, J., Cui, Y., and Yang, Z., Effects of psoralen as an anti-tumor agent in human breast cancer MCF-7/ADR cells, Biol. Pharm. Bull., 2016, vol. 39, p. 815. https://doi.org/10.1248/bpb.b15-00957

    Article  PubMed  Google Scholar 

  117. Bartnik, M., Sławińska-Brych, A., Żurek, A., Kandefer-Szerszeń, M., and Zdzisińska, B., 8-methoxypsoralen reduces AKT phosphorylation, induces intrinsic and extrinsic apoptotic pathways, and suppresses cell growth of SK-N-AS neuroblastoma and SW620 metastatic colon cancer cells, J. Ethnopharmacol., 2017, vol. 207, p. 19. https://doi.org/10.1016/j.jep.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  118. Zheng, Y.M., Lu, A.X., Shen, J.Z., Kwok, A.H.Y., and Ho, W.S., Imperatorin exhibits anticancer activities in human colon cancer cells via the caspase cascade, Oncol. Rep., 2016, vol. 35, p. 1995. https://doi.org/10.3892/or.2016.4586

    Article  CAS  PubMed  Google Scholar 

  119. Lee, Y.M., Wu, T.H., Chen, S.F., and Chung, J.G., Effect of 5-methoxypsoralen (5-MOP) on cell apoptosis and cell cycle in human hepatocellular carcinoma cell line, Toxicol. in Vitro, 2003, vol. 17, p. 279. https://doi.org/10.1016/S0887-2333(03)00014-6

    Article  CAS  PubMed  Google Scholar 

  120. Ren, Y., Song, X., Tan, L., Guo, C., Wang, M., Liu, H., Cao, Z., Li, Y., and Peng, C., A review of the pharmacological properties of psoralen, Front. Pharmacol., 2020, vol. 11, p. 571535. https://doi.org/10.3389/fphar.2020.571535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liang, Y., Xie, L., Liu, K., Cao, Y., Dai, X., Wang, X., Lu, J., Zhang, X., and Li, X., Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity, Phytother. Res., 2021, vol. 35, p. 6131. https://doi.org/10.1002/ptr.7221

    Article  CAS  PubMed  Google Scholar 

  122. Wu, A., Lu, J., Zhong, G., Lu, L., Qu, Y., and Zhang, C., Xanthotoxin (8-methoxypsoralen): A review of its chemistry, pharmacology, pharmacokinetics, and toxicity, Phytother. Res., 2022, vol. 36, p. 3805. https://doi.org/10.1002/ptr.7577

    Article  CAS  PubMed  Google Scholar 

  123. Deng, M., Xie, L., Zhong, L., Liao, Y., Liu, L., and Li, X., Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics, Eur. J. Pharmacol., 2020, vol. 879, p. 173124. https://doi.org/10.1016/j.ejphar.2020.173124

    Article  CAS  PubMed  Google Scholar 

  124. Tong, K., Xin, C., and Chen, W., Isoimperatorin induces apoptosis of the SGC-7901 human gastric cancer cell line via the mitochondria-mediated pathway, Oncol. Lett., 2017, vol. 13, p. 518. https://doi.org/10.3892/ol.2016.5387

    Article  CAS  PubMed  Google Scholar 

  125. Mottaghipisheh, J., Oxypeucedanin: chemotaxonomy, isolation, and bioactivities, Plants, 2021, vol. 10, p. 1577. https://doi.org/10.3390/plants10081577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mahendra, C.K., Tan, L.T.H., Lee, W.L., Yap, W.H., Pusparajah, P., Low, L.E., Tang, S.Y., Chan, K.G., Lee, L.H., and Goh, B.H., Angelicin—a furocoumarin compound with vast biological potential, Front. Pharmacol., 2020, vol. 11, p. 366. https://doi.org/10.3389/fphar.2020.00366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nijsten, T.E.C. and Stern, R.S., The increased risk of skin cancer is persistent after discontinuation of psoralen+ultraviolet a: a cohort study, J. Invest. Dermatol., 2003, vol. 121, p. 252. https://doi.org/10.1046/j.1523-1747.2003.12350.x

    Article  CAS  PubMed  Google Scholar 

  128. Stern, R.S., The risk of squamous cell and basal cell cancer associated with psoralen and ultraviolet A therapy: A 30-year prospective study, J. Am. Acad. Dermatol., 2012, vol. 66, p. 553. https://doi.org/10.1016/j.jaad.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  129. Cho, Y.H., Kim, J.H., Park, S.M., Lee, B.C., Pyo, H.B., and Park, H.D., New cosmetic agents for skin whitening from Angelica dahurica, J. Cosmet. Sci., 2006, vol. 57, p. 11.

    CAS  PubMed  Google Scholar 

  130. Matsuda, H., Hirata, N., Kawaguchi, Y., Yamazaki, M., Naruto, S., Shibano, M., Taniguchi, M., Baba, K., and Kubo, M., Melanogenesis stimulation in murine B16 melanoma cells by Umberiferae plant extracts and their coumarin constituents, Biol. Pharm. Bull., 2005, vol. 28, p. 1229. https://doi.org/10.1248/bpb.28.1229

    Article  CAS  PubMed  Google Scholar 

  131. Cardoso, C.A.L., Vilegas, W., and Honda, N.K., Rapid determination of furanocoumarins in creams and pomades using SPE and GC, J. Pharmaceut. Biomed., 2000, vol. 22, p. 203. https://doi.org/10.1016/S0731-7085(99)00255-1

    Article  CAS  Google Scholar 

  132. Chu, C., Liu, C., Yang, F., Lian, L., Li, J., Mao, H., and Yan, J., A dual preconcentration method by combining micro matrix solid-phase dispersion extraction with field-enhanced sample injection and micelle to cyclodextrin stacking for sensitive analysis of neutral coumarins, Electrophoresis, 2021, vol. 42, p. 1102. https://doi.org/10.1002/elps.202000273

    Article  CAS  PubMed  Google Scholar 

  133. Masson, J., Liberto, E., Beolor, J.-C., Brevard, H., Bicchi, C., and Rubiolo, P., Oxygenated heterocyclic compounds to differentiate Citrus spp. essential oils through metabolomic strategies, Food Chem., 2016, vol. 206, p. 223. https://doi.org/10.1016/j.foodchem.2016.03.057

    Article  CAS  PubMed  Google Scholar 

  134. Noh, H.S., Jin, M.H., and Lee, S.H., KR Patent 2017076469, 2017.

  135. Kim, D.K., Lim, J.P., Yang, J.H., Eom, D.O., Eun, J.S., and Leem, K.H., Acetylcholinesterase inhibitors from the roots of Angelica dahurica, Arch. Pharm. Res., 2002, vol. 25, p. 856. https://doi.org/10.1007/BF02977004

    Article  CAS  PubMed  Google Scholar 

  136. Karakaya, S., Koca, M., Sytar, O., and Duman, H., The natural phenolic compounds and their antioxidant and anticholinesterase potential of herb Leiotulus dasyanthus (K. Koch) Pimenov & Ostr., Nat. Prod. Res., 2019, vol. 34, p. 1303. https://doi.org/10.1080/14786419.2018.1557176

    Article  CAS  PubMed  Google Scholar 

  137. Kang, S.Y. and Kim, Y.C., Neuroprotective coumarins from the root of Angelica gigas: Structure-activity relationships, Arch. Pharm. Res., 2007, vol. 30, p. 1368. https://doi.org/10.1007/BF02977358

    Article  CAS  PubMed  Google Scholar 

  138. Piao, X.L., Yoo, H.H., Kim, H.Y., Kang, T.L., Hwang, G.S., and Park, J.H., Estrogenic activity of furanocoumarins isolated from Angelicae dahuricae, Arch. Pharm. Res., 2006, vol. 29, p. 741. https://doi.org/10.1007/BF02974073

    Article  CAS  PubMed  Google Scholar 

  139. Panno, M.L., Giordano, F., Rizza, P., Pellegrino, M., Zito, D., Giordano, C., Mauro, L., Catalano, S., Aqui-la, S., Sisci, D., De Amicis, F., Vivacqua, A., Fuqua, S.W.A., and Andò, S., Bergapten induces ER depletion in breast cancer cells through SMAD4-mediated ubiquitination, Breast Cancer Res. Treat., 2012, vol. 136, p. 443. https://doi.org/10.1007/s10549-012-2282-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Panno, M., Giordano, F., Palma, M., Bartella, V., Rago, V., Maggiolini, M., Sisci, D., Lanzino, M., De Amicis, F., and Ando, S., Evidence that bergapten, independently of its photoactivation, enhances p53 gene expression and induces apoptosis in human breast cancer cells, CCDT, 2009, vol. 9, p. 469. https://doi.org/10.2174/156800909788486786

    Article  CAS  Google Scholar 

  141. Shanmugam, H., Dharun, V.N., Biswal, B.K., Chandran, S.V., Vairamani, M., and Selvamurugan, N., Osteogenic stimulatory effect of heraclenin purified from bael in mouse mesenchymal stem cells in vitro, Chem. Biol. Interact., 2019, vol. 310, p. 108750. https://doi.org/10.1016/j.cbi.2019.108750

    Article  CAS  PubMed  Google Scholar 

  142. Wei, W., Wu, X.-W., Deng, G.-G., and Yang, X.-W., Anti-inflammatory coumarins with short- and long-chain hydrophobic groups from roots of Angelica dahurica cv. Hangbaizhi, Phytochem., 2016, vol. 123, p. 58. https://doi.org/10.1016/j.phytochem.2016.01.006

    Article  CAS  Google Scholar 

  143. Lee, T.-H., Chen, Y.-C., Hwang, T.-L., Shu, C.-W., Sung, P.-J., Lim, Y.-P., Kuo, W.-L., and Chen, J.-J., New coumarins and anti-inflammatory constituents from the fruits of Cnidium monnieri, IJMS, 2014, vol. 15, p. 9566. https://doi.org/10.3390/ijms15069566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rim, H.-K., Cho, W., Sung, S.H., and Lee, K.-T., Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κb pathways and protects mice from lethal endotoxin shock, J. Pharmacol. Exp. Ther., 2012, vol. 342, p. 654. https://doi.org/10.1124/jpet.112.194613

    Article  CAS  PubMed  Google Scholar 

  145. Jeong, H.-J., Na, H.-J., Kim, S.-J., Rim, H.-K., Myung, N.-Y., Moon, P.-D., Han, N.-R., Seo, J.-U., Kang, T.-H., Kim, J.-J., Choi, Y., Kang, I.-C., Hong, S.-H., Kim, Y.-A., Seo, Y.-W., et al., Anti-inflammatory effect of columbianetin on activated human mast cells, Biol. Pharm. Bull., 2009, vol. 32, p. 1027. https://doi.org/10.1248/bpb.32.1027

    Article  CAS  PubMed  Google Scholar 

  146. Lu, J., Fang, K., Wang, S., Xiong, L., Zhang, C., Liu, Z., Guan, X., Zheng, R., Wang, G., Zheng, J., and Wang, F., Anti-inflammatory effect of columbianetin on lipopolysaccharide-stimulated human peripheral blood mononuclear cells, Mediat. Inflamm., 2018, vol. 2018, p. 1. https://doi.org/10.1155/2018/9191743

    Article  CAS  Google Scholar 

  147. Chen, S., Wang, Y., Zhang, L., Han, Y., Liang, C., Wang, S., Qi, L., Pang, X., Li, J., and Chang, Y., Therapeutic effects of columbianadin from Angelicae pubescentis radix on the progression of collagen-induced rheumatoid arthritis by regulating inflammation and oxidative stress, J. Ethnopharmacol., 2023, vol. 316, p. 116727. https://doi.org/10.1016/j.jep.2023.116727

    Article  CAS  PubMed  Google Scholar 

  148. Souri, E., Farsam, H., Sarkheil, P., and Ebadi, F., Antioxidant activity of some furanocoumarins Isolated from Heracleum persicum, Pharm. Biol., 2004, vol. 42, p. 396. https://doi.org/10.1080/13880200490885077

    Article  CAS  Google Scholar 

  149. Karakaya, S., Bingol, Z., Koca, M., Dagoglu, S., Pınar, N.M., Demirci, B., Gulcin, İ., Brestic, M., and Sytar, O., Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential, Saudi Pharm. J., 2020, vol. 28, p. 1. https://doi.org/10.1016/j.jsps.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  150. Naseri, M., Monsef-Esfehani, H.R., Saeidnia, S., Dastan, D., and Gohari, A.R., Antioxidative coumarins from the roots of Ferulago subvelutina, Asian J. Chem., 2013, vol. 25, p. 1875. https://doi.org/10.14233/ajchem.2013.13208

    Article  CAS  Google Scholar 

  151. Jalilian, F., Moieni-Arya, M., Hosseinzadeh, L., and Shokoohinia, Y., Oxypeucedanin and isoimperatorin extracted from Prangos ferulacea (L.) Lindl protect PC12 pheochromocytoma cells from oxidative stress and apoptosis induced by doxorubicin, Res. Pharm. Sci., 2022, vol. 17, p. 12. https://doi.org/10.4103/1735-5362.329922

    Article  PubMed  Google Scholar 

  152. Piao, X.L., Park, I.H., Baek, S.H., Kim, H.Y., Park, M.K., and Park, J.H., Antioxidative activity of furanocoumarins isolated from Angelica dahurica, J. Ethnopharmacol., 2004, vol. 93, p. 243. https://doi.org/10.1016/j.jep.2004.03.054

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Maria Dmitrievna Logacheva (Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences) for the initial idea of the work, Mikhail Georgievich Pimenov (Biological Faculty and Botanical Garden, Moscow State University) for consultations on the taxonomy of Umbelliferae, Polina Mavrina (VILAR) for assistance in digitizing full-text Soviet publications of the 1950s, and Nasaev Shamsutdin for preparing the figures.

Funding

The work was performed within the framework of the state research topic “The Study of Intra- and Intercellular Interactions by Molecular, Cell Biology, Physiology, and Mathematicals methods and Bioinformatics,” no. AAAA-A19–119121690043–3 (Belozersky Research Institute of Physical and Chemical Biology, Moscow State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Shtratnikova.

Ethics declarations

CONFLICT OF INTEREST

As author of this work, I declare that I have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: 4CL—4-coumarate-coA ligase; 5-OH-XS—5-OH-xanthotoxin synthase AkPT1—prenyltransferase of Angelica keiskei; AS—angelicin synthase; BMT—bergaptol-O-methyltransferase; C2'H—p-coumaroyl-coA-2'hydroxylase; C4H—cinnamate C-4-hydroxylase; Cox-2—cyclooxygenase 2; CpPT1—prenyltransferase of Citrus paradisi; CS—columbianetin synthase; FDAFood and Drug Administration, United States; MS—marmesin synthase; NF-κB—Nuclear Factor Kappa of activated B cells; P5M—psoralen-5-monooxygenase; PAL—phenylalanine ammonia lyase; PI3/Akt—phosphatidylinositol 3-kinase; PS—psoralen synthase; P-UVA—psoralen-ultraviolet therapy; TNF—tumor necrosis factor; U6(8)DT (PT)—dimethylallyl diphosphate: umbelliferone prenyltransferase at position 6 or 8; XMT—xanthotoxol-O-methyltransferase; XS—xanthotoxol synthase; VILAR—All-Russia Institute of Medicinal and Aromatic Plants; BIN RAS—Komarov Botanical Institute, Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtratnikova, V.Y. Furanocoumarins: History of Research, Diversity, Synthesis, Physiological Role in the Plant, and Medical Application. Russ J Plant Physiol 70, 169 (2023). https://doi.org/10.1134/S1021443723700280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700280

Keywords:

Navigation