Skip to main content

Recent Advances in Molecular Genetics of Furanocoumarin Synthesis in Higher Plants

  • Chapter
  • First Online:
Recent Advances in Redox Active Plant and Microbial Products

Abstract

Furanocoumarins are important plant defense compounds, which are mainly found in four higher plant families: Apiaceae, Moraceae, Fabaceae, and Rutaceae. These molecules constitute a subclass of polyphenolic compounds for which the biogenesis in plants has remained elusive until recently at the molecular level. Over the last decade, the first genes and enzymes involved in furanocoumarin synthesis have been described. As regards the linear furanocoumarin bergapten, starting from the precursor molecule p-coumaroyl CoA, we now have three different enzymatic steps (2 cytochrome P450 enzymes and one dioxygenase) out of a total of five that have been unraveled so far. With the exception of one enzyme that was characterized in Rutaceae, all other enzymes have been isolated from Apiaceae plants. The isolation of orthologous genes from other plant families is now under way and will likely reveal whether furanocoumarins appeared in an ancestor phylum or if they emerged independently over different plant taxonomical groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adisen E, Karaca F, Oztas M, Gurer MA (2008) Efficacy of local psoralen ultraviolet a treatments in psoriasis, vitiligo and eczema. Clin Exp Dermatol 33(3):344–345

    Article  CAS  PubMed  Google Scholar 

  • Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N (1994) Structural and catalytic properties of the 4 phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum-crispum Nym). Eur J Biochem 225(1):491–499

    Article  CAS  PubMed  Google Scholar 

  • Baskin JM, Murrell JT, Wolf FT (1967) Psoralen in seeds of psoralea psoralioides (Leguminosae). Phyton 24(2):85

    CAS  Google Scholar 

  • Beier RC, Oertli EH (1983) Psoralen and other linear furocoumarins as phytoalexins in celery. Phytochemistry 22(11):2595–2597

    Article  CAS  Google Scholar 

  • Berenbaum MR, Zangerl AR (2008) Facing the future of plant-insect interaction research: le retour a la “raison d’etre’’. Plant Physiol 146(3):804–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bourgaud F, Allard N, Guckert A, Forlot P (1989) in Psoralens, past, present and future of Photochemoprotection and other Biological Activities. Fitzpatrick T, Forlot P, Pathak MA., Urbach F ed. J. Libbey Eurotext, Paris pp. 301–306

    Google Scholar 

  • Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5(2–3):293–308

    Article  CAS  Google Scholar 

  • Ellis BE, Amrhein N (1971) Nih-shift during aromatic orthohydroxylation in higher plants. Phytochemistry 10(12):3069–3072

    Article  CAS  Google Scholar 

  • Endler A, Martens S, Wellmann F, Matern U (2008) Unusually divergent 4-coumarate : CoA-ligases from Ruta graveolens L. Plant Mol Biol 67(4):335–346

    Article  CAS  PubMed  Google Scholar 

  • Fahrendorf T, Dixon RA (1993) Stress responses in alfalfa (Medicago sativa L.). XVIII: molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch Biochem Biophys 305(2):509–515

    Article  CAS  PubMed  Google Scholar 

  • Girennavar B, Jayaprakasha GK, Patil BS (2007) Potent inhibition of human cytochrome P450 3A4, 2D6, and 2C9 isoenzymes by grapefruit juice and its furocoumarins. J Food Sci 72(8):C417–C421

    Article  CAS  PubMed  Google Scholar 

  • Gorgus E, Lohr C, Raquet N, Guth S, Schrenk D (2010) Limettin and furocoumarins in beverages containing citrus juices or extracts. Food Chem Toxicol 48(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Gravot A, Larbat R, Hehn A, Lievre K, Gontier E, Goergen JL, Bourgaud F (2004) Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation. Arch Biochem Biophys 422(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Guo LQ, Yamazoe Y (2004) Inhibition of cytochrome P450 by furanocoumarins in grapefruit juice and herbal medicines. Acta Pharmacol Sin 25(2):129–136

    CAS  PubMed  Google Scholar 

  • Hale AL, Meepagala KM, Oliva A, Aliotta G, Duke SO (2004) Phytotoxins from the leaves of Ruta graveolens. J Agric Food Chem 52(11):3345–3349

    Article  CAS  PubMed  Google Scholar 

  • Hamerski D, Matern U (1988a) Biosynthesis of psoralens. Psoralen 5-monooxygenase activity from elicitor-treated Ammi majus cells. FEBS Lett 239(2):263–265

    Article  CAS  PubMed  Google Scholar 

  • Hamerski D, Matern U (1988b) Elicitor-induced biosynthesis of psoralens in ammi-majus L suspension-cultures—microsomal conversion of demethylsuberosin into (+)marmesin and psoralen. Eur J Biochem 171(1–2):369–375

    Article  CAS  PubMed  Google Scholar 

  • Hauffe KD, Hahlbrock K, Scheel D (1986) Elicitor-stimulated furanocoumarin biosynthesis in cultured parsley cells—S-adenosyl-L-methionine: bergaptol and S-adenosyl-L-methionine—xanthotoxol O-methyltransferases. Z Naturforsch C 41(1–2):228–239

    CAS  Google Scholar 

  • Hehmann M, Lukacin R, Ekiert H, Matern U (2004) Furanocoumarin biosynthesis in Ammi majus L.—Cloning of bergaptol O-methyltransferase. Eur J Biochem 271(5):932–940

    Article  CAS  PubMed  Google Scholar 

  • Hubner S, Hehmann M, Schreiner S, Martens S, Lukacin R, Matern U (2003) Functional expression of cinnamate 4-hydroxylase from Ammi majus L. Phytochemistry 64(2):445–452

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa A, Kuma T, Sasaki H, Sasaki N, Ozeki Y, Kobayashi N, Kitamura Y (2009) Constitutive expression of bergaptol O-methyltransferase in Glehnia littoralis cell cultures. Plant Cell Rep 28(2):257–265

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Moller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8(3):280–291

    Article  CAS  PubMed  Google Scholar 

  • Kai K, Shimizu B, Mizutani M, Watanabe K, Sakata K (2006) Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry 67(4):379–386

    Article  CAS  PubMed  Google Scholar 

  • Koopmann E, Logemann E, Hahlbrock K (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol 119(1):49–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kruse T, Ho KL, Yoo HD, Johnson T, Hippely M, Park JH, Flavell R, Bobzin S (2008) In planta biocatalysis screen of P450s identifies 8-methoxypsoralen as a substrate for the CYP82C subfamily, yielding original chemical structures. Chem Biol 15(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Larbat R, Hehn A, Hans J, Schneider S, Jugde H, Schneider B, Matern U, Bourgaud F (2009) Isolation and functional characterization of CYP71AJ4 encoding for the first P450 monooxygenase of angular furanocoumarin biosynthesis. J Biol Chem 284(8):4776–4785

    Article  CAS  PubMed  Google Scholar 

  • Larbat R, Kellner S, Specker S, Hehn A, Gontier E, Hans J, Bourgaud F, Matern U (2007) Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis. J Biol Chem 282(1):542–554

    Article  CAS  PubMed  Google Scholar 

  • Larsen PK, Sandberg F (1970) Constituents of umbelliferous plants. XV. Coumarins from thapsia garganica L. The structure of new coumarin. Acta Chem Scand 24(3):1113

    Article  CAS  PubMed  Google Scholar 

  • Lo SC, Chung PE, Wang CS (2012) Molecular cloning and functional analysis of bergaptol-O-methyltransferase from Angelica dahurica (Bai Zhi) and using it to efficiently produce bergapten in E. coli. Bot Stud 53(2):197–206

    CAS  Google Scholar 

  • Lois R, Hahlbrock K (1992) Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate—CoA ligase gene families in various organs of parsley plants. Z Naturforsch C 47(1–2):90–94

    CAS  PubMed  Google Scholar 

  • Luo KW, Sun JG, Chan JYW, Yang L, Wu SH, Fung KP, Liu FY (2011) Anticancer effects of imperatorin isolated from angelica dahurica: induction of apoptosis in HepG2 cells through both death-receptor- and mitochondria-mediated pathways. Chemotherapy 57(6):449–459

    Article  CAS  PubMed  Google Scholar 

  • Mendez J, Rubido J (1980) Coumarins and phenols of thapsia-villosa fruits. Planta Med 38(2):177–179

    Article  CAS  Google Scholar 

  • Munakata R, Inoue T, Koeduka T, Sasaki K, Tsurumaru Y, Sugiyama A, Uto Y, Hori H, Azuma J, Yazaki K (2012) Characterization of coumarin-specific prenyltransferase activities in citrus limon peel. Biosci Biotech Bioch 76(7):1389–1393

    Article  CAS  Google Scholar 

  • Parast BM, Chetri SK, Sharma K, Agrawal V (2011) In vitro isolation, elicitation of psoralen in callus cultures of psoralea corylifolia and cloning of psoralen synthase gene. Plant Physiol Bioch 49(10):1138–1146

    Article  CAS  Google Scholar 

  • Pierrel MA, Batard Y, Kazmaier M, Mignottevieux C, Durst F, Werckreichhart D (1994) Catalytic properties of the plant cytochrome-P450 Cyp73 expressed in yeast—substrate-specificity of a cinnamate hydroxylase. Eur J Biochem 224(3):835–844

    Article  CAS  PubMed  Google Scholar 

  • Plumas JL, Drillat P, Jacob MC, Richard MJ, Favrot MC (2003) Extracorporeal photochemotherapy for treatment of clonal T cell proliferations. B Cancer 90(8–9):763–770

    Google Scholar 

  • Razavi SM (2011) Plant coumarins as allelopathic agents. Int J Biol Chem 5:86–90

    Article  CAS  Google Scholar 

  • Sasaki K, Mito K, Ohara K, Yamamoto H, Yazaki K (2008) Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of sophora flavescens. Plant Physiol 146(3):1075–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3 ‘-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276(39):36566–36574

    Article  CAS  PubMed  Google Scholar 

  • Schuler MA (2011) P450s in plant-insect interactions. Bba-Proteins Proteom 1814(1):36–45

    Article  CAS  Google Scholar 

  • Sharma SK, Garrett JM, Brown SA (1979) Separation of the S-adenosylmethionine: 5- and 8-hydroxyfuranocoumarin O-methyltransferases of Ruta graveolens L. By general ligand affinity chromatography. Z Naturforsch C 34C(5–6):387–391

    CAS  PubMed  Google Scholar 

  • Shen G, Huhman D, Lei Z, Snyder J, Sumner LW, Dixon RA (2012) Characterization of an isoflavonoid-specific prenyltransferase from lupinus albus. Plant Physiol 159(1):70–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanjek V, Piel J, Boland W (1999) Synthesis of furanocoumarins: mevalonate-independent prenylation of umbelliferone in Apium graveolens (Apiaceae). Phytochemistry 50(7):1141–1145

    Article  CAS  Google Scholar 

  • Teutsch HG, Hasenfratz MP, Lesot A, Stoltz C, Garnier JM, Jeltsch JM, Durst F, Werckreichhart D (1993) Isolation and Sequence of a cdna-encoding the Jerusalem-Artichoke cinnamate 4-hydroxylase, a major plant cytochrome-P450 involved in the general phenylpropanoid pathway. P Natl Acad Sci USA 90(9):4102–4106

    Article  CAS  Google Scholar 

  • Vialart G, Hehn A, Olry A, Ito K, Krieger C, Larbat R, Paris C, Shimizu B, Sugimoto Y, Mizutani M, Bourgaud F (2012) A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2′-hydroxylase activity (C2′H): a missing step in the synthesis of umbelliferone in plants. Plant J Cell Mol Biol 70(3):460–470

    Article  CAS  Google Scholar 

  • Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70(15–16):1739–1745

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bourgaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bourgaud, F., Olry, A., Hehn, A. (2014). Recent Advances in Molecular Genetics of Furanocoumarin Synthesis in Higher Plants. In: Jacob, C., Kirsch, G., Slusarenko, A., Winyard, P., Burkholz, T. (eds) Recent Advances in Redox Active Plant and Microbial Products. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8953-0_14

Download citation

Publish with us

Policies and ethics