Skip to main content
Log in

Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

At present, pharmacologically significant proteins are synthesized in different expression systems, from bacterial to mammalian and insect cell cultures. The plant expression systems (especially suspension cell culture) combine the simplicity and low cost of bacterial systems with the ability to perform eukaryotic-type posttranslational protein modifications. A low (compared with bacterial systems) yield of the target recombinant protein is one of the shortcomings of the plant expression systems. In this review, methods, developed over the past two decades, to increase the level of recombinant gene expression and methods to prevent silencing, caused by a random insertion of the target gene into heterochromatin region, are considered. The emergence of CRISPR/Cas technologies led to the creation of a new approach to increase the gene expression level, directional insertion of “pharmaceutical” protein genes in specific, knowingly transcriptionally active genome regions. The plant cell housekeeping gene loci, actively expressed throughout the interphase, are these regions. The organization of some housekeeping genes, most promising for transferring recombinant protein genes in their loci, is considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zhu J. 2012. Mammalian cell protein expression for biopharmaceutical production, Biotechnol. Adv. 30, 1158–1170.

    Article  CAS  PubMed  Google Scholar 

  2. Tekoah Y., Shulman A., Kizhner T., Ruderfer I., Fux L., Nataf Y., Bartfeld D., Ariel T., Gingis-Velitski S., Hanania U., Shaaltiel Y. 2015. Large-scale production of pharmaceutical proteins in plant cell culture: The protalix experience. Plant Biotechnol. J. 13, 1199–1208.

    Article  CAS  PubMed  Google Scholar 

  3. Naji-Talakar S. 2017. Plant-derived biopharmaceuticals: Overview and success of agroinfiltration. Trends Capstone. 2, 1–12.

    Google Scholar 

  4. Ullrich K.K., Hiss M., Rensing S.A. 2015. Means to optimize protein expression in transgenic plants. Curr. Opin. Biotechnol. 32, 61–67.

    Article  CAS  PubMed  Google Scholar 

  5. Habibi P., Prado G.S., Pelegrini P.B., Hefferon K.L., Soccol C.R., Grossi-de-Sa M.F. 2017. Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell Tissue Organ Culture (PCTOC). 130, 449–467.

    Article  CAS  Google Scholar 

  6. Laxa M. 2017. Intron-mediated enhancement: A tool for heterologous gene expression in plants? Front. Plant Sci. 7, 1977.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Saberianfar R., Menassa R. 2018. Strategies to increase expression and accumulation of recombinant proteins. In: Molecular Pharming: Applications, Challenges, and Emerging Areas. Ed. Kermode A.R. New York: Wiley, pp. 119–135.

  8. Nandi S., Khush G.S. 2015. Strategies to increase heterologous protein expression in rice grains. In: Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. New York: Springer, pp. 241‒262.

    Google Scholar 

  9. Nocarova E., Fischer L. 2009. Cloning of transgenic tobacco BY-2 cells: An efficient method to analyse and reduce high natural heterogeneity of transgene expression. BMC Plant Biol. 9, 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang N., Yang D. 2005. ExpressTec: High level expression of biopharmaceuticals in cereal grains. In: Modern Biopharmaceuticals: Design, Development and Optimization. Ed. Knablein J. New York: Wiley VCH, vol. 3, pp. 931–947.

    Google Scholar 

  11. Nandi S., Yalda D., Lu S., Nikolov Z., Misaki R., Fujiyama K., Huang N. 2005. Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Res. 14, 237–249.

    Article  CAS  PubMed  Google Scholar 

  12. Stolt-Bergner P., Benda C., Bergbrede T., Besir H., Celie P.H., Chang C., Drechsel D., Fischer A., Geerlof A., Giabbai B., Heuvel van den J., Huber G., Knecht W., Lehner A., Lemaitre R., et al. 2018. Baculovirus-driven protein expression in insect cells: A benchmarking study. J. Struct. Biol. 203 (2), 71–80. https://doi.org/10.1016/j.jsb.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  13. Mader A., Prewein B., Zboray K., Casanova E., Kunert R. 2013. Exploration of BAC versus plasmid expression vectors in recombinant CHO cells. Appl. Microbiol. Biotechnol. 97, 4049–4054.

    Article  CAS  PubMed  Google Scholar 

  14. Luo M., Gilbert B., Ayliffe M. 2016. Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Repts. 35, 1439–1450.

    Article  CAS  Google Scholar 

  15. Naqvi S., Farre G., Sanahuja G., Capell T., Zhu C., Christou P. 2010. When more is better: Multigene engineering in plants. Trends Plant Sci. 15, 48–56.

    Article  CAS  PubMed  Google Scholar 

  16. Geier M., Fauland P., Vogl T., Glieder A. 2015. Compact multi-enzyme pathways in P. pastoris. Chem. Commun. 51, 1643–1646.

    Article  CAS  Google Scholar 

  17. Ha S.H., Liang Y.S., Jung H., Ahn M.-J., Suh S.-C., Kweon S.-J., Kim D.-H., Kim Y.-M., Kim J.-K. 2010. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol. J. 8, 928–938.

    Article  CAS  PubMed  Google Scholar 

  18. Makhzoum A., Benyammi R., Moustafa K., Trémouillaux-Guiller J. 2014. Recent advances on host plants and expression cassettes’ structure and function in plant molecular pharming. BioDrugs. 28, 145–159.

    Article  CAS  PubMed  Google Scholar 

  19. Biłas R., Szafran K., Hnatuszko-Konka K., Kononowicz A.K. 2016. cis-Regulatory elements used to control gene expression in plants. Plant Cell, Tissue Organ Culture (PCTOC). 127, 269–287.

    Article  CAS  Google Scholar 

  20. Porto M.S., Pinheiro M.P.N., Batista V.G.L., Cavalcanti dos Santos R., de Albuquerque Melo Filho P., de Lima L.M. 2014. Plant promoters: An approach of structure and function. Mol. Biotechnol. 56, 38–49.

    Article  CAS  PubMed  Google Scholar 

  21. Moustafa K., Makhzoum A., Trémouillaux-Guiller J. 2016. Molecular farming on rescue of pharma industry for next generations. Crit. Rev. Biotechnol. 36, 840–850.

    Article  CAS  PubMed  Google Scholar 

  22. Hieno A., Naznin H.A., Hyakumachi M., Sakurai T, Tokizawa M., Koyama H., Sato N., Nishiyama T., Hasebe M., Zimmer A.D., Lang D., Reski R., Rensing S.A., Obokata J., Yamamoto Y.Y. 2014. ppdb: plant promoter database version 3.0. Nucleic Acids Res. 42, D1188–D1192.

    Article  CAS  PubMed  Google Scholar 

  23. Mann D.G.J., King Z.R., Liu W., Joyce B.L., Percifield R.J., Hawkins J.S., LaFayette P.R., Artelt B.J., Burris J.N., Mazarei M., Bennetzen J.L., Parrott W.A., Stewart C.N. 2011. Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnol. 11, 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J., Martin J.M., Beecher B., Morris C.F., Hannah L.C., Giroux M.J. 2009. Seed-specific expression of the wheat puroindoline genes improves maize wet milling yields. Plant Biotechnol. J. 7 (8), 733–743.

    Article  CAS  PubMed  Google Scholar 

  25. Qu L.Q., Xing Y.P., Liu W.X., Xu X.P., Song Y.R. 2008. Expression pattern and activity of six glutelin gene promoters in transgenic rice. J. Exp. Bot. 59 (9), 2417–2424.

    Article  CAS  PubMed Central  Google Scholar 

  26. Coego A., Brizuela E., Castillejo P., Ruíz S., Koncz C., Del Pozo J. C., Pineiro M., Jarrillo J.A., Paz-Ares J., León J. 2014. The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant J. 77, 944–953.

    Article  CAS  PubMed  Google Scholar 

  27. Muller K., Siegel D., Jahnke F.R., Gerrer K., Wend S., Decker E.L., Reski R., Weber W., Zurbriggen M.D. 2014. A red light-controlled synthetic gene expression switch for plant systems. Mol. Biosyst. 10, 1679–1688.

    Article  PubMed  Google Scholar 

  28. Liu W., Stewart C.N. 2016. Plant synthetic promoters and transcription factors. Curr. Opin. Biotechnol. 37, 36–44.

    Article  CAS  PubMed  Google Scholar 

  29. Kim Y., Lee G., Jeon E., Sohn E.J., Lee Y., Kang H., Lee D.W., Kim D.H., Hwang I. 2014. The immediate upstream region of the 5'-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res. 42, 485–498.

    Article  CAS  PubMed  Google Scholar 

  30. Plotkin J.B., Kudla G. 2011. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42.

    Article  CAS  PubMed  Google Scholar 

  31. Simon A.E., Miller W.A. 2013. 3′ Cap-independent translation enhancers of plant viruses. Annu. Rev. Microbiol. 67, 21–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meshcheriakova Y.A., Saxena P., Lomonossoff G.P. 2014. Fine-tuning levels of heterologous gene expression in plants by orthogonal variation of the untranslated regions of a nonreplicating transient expression system. Plant Biotechnol. J. 12, 718–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Srivastava A.K., Lu Y., Zinta G., Lang Z., Zhu J.K. 2018. UTR-dependent control of gene expression in plants. Trends Plant Sci. 23, 248–259.

    Article  CAS  PubMed  Google Scholar 

  34. Laxa M., Müller K., Lange N., Doering L., Pruscha J.T., Peterhänsel C. 2016. The 5' UTR intron of the Arabidopsis GGT1 aminotransferase enhances promoter activity by recruiting RNA polymerase II. Plant Physiol. 172, 313–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu J., Sivamani E., Azhakanandam K., Samadder P., Li X., Qu R. 2008. Gene expression enhancement mediated by the 5′ UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol. Genet. Genom. 279, 563–572.

    Article  CAS  Google Scholar 

  36. Scott M.P. 2009. Transgenic maize. Methods Mol. Biol. 526, 6–7.

    Google Scholar 

  37. Christensen A.H., Quail P.H. 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5, 213–218.

    Article  CAS  PubMed  Google Scholar 

  38. Depicker A., Van Montagu M. 1997. Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9, 373–382.

    Article  PubMed  Google Scholar 

  39. Dana A., Tuller T. 2014. The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 42, 9171–9181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gould N., Hendy O., Papamichail D. 2014. Computational tools and algorithms for designing customized synthetic genes. Front. Bioeng. Biotechnol. 2, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gustafsson C., Govindarajan S., Minshull J. 2004. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353.

    Article  CAS  PubMed  Google Scholar 

  42. Wu G., Zheng Y., Qureshi I., Zin H.T., Beck T., Bulka B., Freeland S.J. 2007. SGDB: A database of synthetic genes re-designed for optimizing protein overexpression. Nucleic Acids Res. 35, D76–D79.

    Article  CAS  PubMed  Google Scholar 

  43. Franklin S., Ngo B., Efuet E., Mayfield S.P. 2002. Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J. 30, 733–744.

    Article  CAS  PubMed  Google Scholar 

  44. Gisby M.F., Mellors P., Madesis P., Ellin M., Laverty H., O’Kane S., Ferguson M.W., Day A. 2011. A synthetic gene increases TGFbeta3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol. J. 9, 618–628.

    Article  CAS  PubMed  Google Scholar 

  45. Kwon K.-C., Chan H.-T., León I.R., Williams-Carrier R., Barkan A., Daniell H. 2016. Codon optimization to enhance expression yields insights into chloroplast translation. Plant Physiol. 172, 62–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Komar A.A. 2016. The art of gene redesign and recombinant protein production: Approaches and perspectives. In: Protein Therapeutics. Eds. Sauna Z.E., Kimchi-Sarfati C. Cham, Switzerland: Springer, pp. 161‒177.

    Google Scholar 

  47. Komar A.A. 2009. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 34, 16–24.

    Article  CAS  PubMed  Google Scholar 

  48. Kimchi-Sarfaty C., Oh J.M., Kim I.W., Sauna Z.E., Calcagno A.M., Ambudkar S.V., Gottesman M.M. 2007. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 315, 525–528.

    Article  CAS  PubMed  Google Scholar 

  49. Yu C.H., Dang Y., Zhou Z., Wu C., Zhao F., Sachs M.S., Liu Y. 2015. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell. 59, 744–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim S.J., Yoon J.S., Shishido H., Yang Z., Rooney L.A., Barral J.M., Skach W.R. 2015. Protein folding. Translational tuning optimizes nascent protein folding in cells. Science. 348, 444–448.

    Article  CAS  PubMed  Google Scholar 

  51. Buhr F., Jha S., Thommen M., Mittelstaet J., Kutz F., Schwalbe H., Rodnina M.V., Komar A.A. 2016. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell. 61, 341–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu J.-X., Howell S.H. 2010. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell. 22, 2930–2942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jang I.C., Niu Q.W., Deng S., Zhao P., Chua N. H. 2012. Enhancing protein stability with retained biological function in transgenic plants. Plant J. 72, 345–354.

    Article  CAS  PubMed  Google Scholar 

  54. Thomas D.R., Walmsley A.M. 2015. The effect of the unfolded protein response on the production of recombinant proteins in plants. Plant Cell Rep. 34, 179–187.

    Article  CAS  PubMed  Google Scholar 

  55. Goulet C., Khalf M., Sainsbury F., D’Aous M.-A., Michaud D. 2012. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnol. J. 10, 83–94.

    Article  CAS  PubMed  Google Scholar 

  56. Allshire R.C., Madhani H.D. 2017. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Emery D.W. 2011. The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors. Hum. Gene Ther. 22, 761–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Singer S.D., Liu Z., Cox K.D. 2012. Minimizing the unpredictability of transgene expression in plants: The role of genetic insulators. Plant Cell Rep. 31, 13–25.

    Article  CAS  PubMed  Google Scholar 

  59. Harraghy N., Gaussin A., Mermod N. 2008. Sustained transgene expression using MAR elements. Curr. Gene Ther. 8, 353–366.

    Article  CAS  PubMed  Google Scholar 

  60. Wang F., Wang T.Y., Tang Y.Y., Zhang J.H., Yang X.J. 2012. Different matrix attachment regions flanking a transgene effectively enhance gene expression in stably transfected Chinese hamster ovary cells. Gene. 500, 59–62.

    Article  CAS  PubMed  Google Scholar 

  61. Verma D., Verma M., Dey M., Jain R.K., Wu R. 2005. Molecular dissection of the tobacco Rb7 matrix attachment region (MAR): Effect of 50 half on gene expression in rice. Plant Sci. 169, 704–711.

    Article  CAS  Google Scholar 

  62. Chinn A.M., Comai L. 1996. The heat shock cognate 80 gene of tomato is flanked by matrix attachment regions. Plant Mol. Biol. 32, 959–968.

    Article  CAS  PubMed  Google Scholar 

  63. Oh S.-J., Jeong J.S., Kim E.H., Yi N.R., Yi S.-I., Jang I.-C., Kim Y.S., Suh S.-C., Nahm B.H., Kim J.-K. 2005. Matrix attachment region from the chicken lysozyme locus reduces variability in transgene expression and confers copy number-dependence in transgenic rice plants. Plant Cell Rep. 24, 145–154.

    Article  CAS  PubMed  Google Scholar 

  64. Butaye K.M.J., Goderis I.J.W.M., Wouters P.F.J., Pues J.M.-T.G., Delaure S.L., Broekaert W.F., Depicker A., Cammue B.P.A., De Bolle M.F.C. 2004. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J. 39, 440–449.

    Article  CAS  PubMed  Google Scholar 

  65. de Bolle M.F.C., Butaye K.M.J., Coucke W.J.W., Goderis I.J.W.M., Wouters P.F.J., van Boxel N., Broekaert W.F., Cammue B.P.A. 2003. Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci. 165, 169–179.

    Article  CAS  Google Scholar 

  66. Torney F., Partier A., Says-Lesage V., Nadaud I., Barret P., Beckert M. 2004. Heritable transgene expression pattern imposed onto maize ubiquitin promoter by maize adh-1 matrix attachment regions: tissue and developmental specificity in maize transgenic plants. Plant Cell Rep. 22, 931–938.

    Article  CAS  PubMed  Google Scholar 

  67. Allen G.C. 2009. The role of nuclear matrix attachment regions in plants. Plant Cell Monogr. 14, 101–129.

    Article  CAS  Google Scholar 

  68. Nagaya S., Yoshida K., Kato K., Akasaka K., Shinmyo A. 2001. An insulator element from the sea urchin Hemicentrotus pulcherrimus suppresses variation in transgene expression in cultured tobacco cells. Mol. Genet. Genomics. 265, 405–413.

    Article  CAS  PubMed  Google Scholar 

  69. She W., Lin W., Zhu Y., Chen Y., Jin W., Yang Y., Han N., Bian H., Zhu M., Wang J. 2010. The gypsy insulator of Drosophila melanogaster, together with its binding protein suppressor of hairywing, facilitate high and precise expression of transgenes in Arabidopsis thaliana. Genetics. 185, 1141–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang S., Li X., Yusufzai T.M., Qiu Y., Felsenfeld G. 2007. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol. Cell. Biol. 27, 7991–8002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dickson J., Gowher H., Strogantsev R., Gaszner M., Hair A., Felsenfeld G., West A.G. 2010. VEZF1 elements mediate protection from DNA methylation. PLoS Genet. 6, e10000804.

    Article  CAS  Google Scholar 

  72. Harland L., Crombie R., Anson S., deBoer J., Ioannou P.A., Antoniou M. 2002. Transcriptional regulation of the human TATA binding protein gene. Genomics. 79, 479–482.

    Article  CAS  PubMed  Google Scholar 

  73. Williams S., Mustoe, T., Mulcahy T., Griffiths M., Simpson D., Antoniou M., Irvine A., Mountain A., Crombie R. 2005. CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol. 5, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Majocchi S., Aritonovska E., Mermod N. 2014. Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Res. 42, 193–204.

    Article  CAS  PubMed  Google Scholar 

  75. Simpson D.J., Williams S.G., Irvine A.S. 2009. US Patent No. US7632661 B2. Washington, DC: U.S. Patent and Trademark Office.

  76. Neville J.J., Orlando J., Mann K., McCloskey B., Antoniou M.N. 2017. Ubiquitous chromatin-opening elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol. Adv. 35, 557–564.

    Article  CAS  PubMed  Google Scholar 

  77. Saunders F., Sweeney B., Antoniou M.N., Stephens P., Cain K. 2015. Chromatin function modifying elements in an industrial antibody production platform-comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One. 10, e0120096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kwaks T.H., Barnett P., Hemrika W., Siersma T., Sewalt R.G., Satijn D.P.E., Brons J.F., van Blokland R., Kwakman P., Kruckeberg A.L., Kelder A., Otte A.P. 2003. Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat. Biotechnol. 21, 553–558.

    Article  CAS  PubMed  Google Scholar 

  79. Zboray K., Sommeregger W., Bogner E., Gili A., Sterovsky T., Fauland K., Grabner B., Stiedl P., Moll H.P., Bauer A., Kunert R., Casanova E. 2015. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells. Nucl. Acids Res. 43, e102–e102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Van Keuren M.L., Gavrilina G.B., Filipiak W.E., Zeidler M.G., Saunders T.L. 2009. Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res. 18, 769–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ahmadi S., Davami F., Davoudi N., Nematpour F., Ahmadi M., Ebadat S., Azadmanesh K., Barkhordari F., Mahboudi F. 2017. Monoclonal antibodies expression improvement in CHO cells by PiggyBac transposition regarding vectors ratios and design. PLoS One. 12, e0179902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dupuy A.J., Fritz S., Largaespada D.A. 2001. Transposition and gene disruption in the male germline of the mouse. Genesis. 30, 82–88.

    Article  CAS  PubMed  Google Scholar 

  83. Horie K., Yusa K., Yae K., Odajima J., Fischer S.E., Keng V.W., Hayakawa T., Mizuno S., Kondoh G., Ijiri T., Matsuda Y., Plasterk R.H.A., Takeda J. 2003. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol. Cell. Biol. 23, 9189–9207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fraser M.J., Ciszczon T., Elick T., Bauser C. 1996. Precise excision of TTAA specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5, 141–151.

    Article  CAS  PubMed  Google Scholar 

  85. Li R., Zhuang Y., Han M., Xu T., Wu X. 2013. piggyBac as a high capacity transgenesis and gene-therapy vector in human cells and mice. Dis. Models. J. Mech. 6, 828–833.

    Article  CAS  Google Scholar 

  86. Wang Y., Yau Y.-Y., Perkins-Balding D., Thompson J.G. 2011. Recombinase technology: Applications and possibilities. Plant Cell Rep. 30, 267–285.

    Article  CAS  PubMed  Google Scholar 

  87. Lee G., Saito I. 1998. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene. 216, 55–65.

    Article  CAS  PubMed  Google Scholar 

  88. Turan S., Kuehle J., Schambach A., Baum C., Bode J. 2010. Multiplexing RMCE: Versatile extensions of the Flp-recombinase-mediated cassette-exchange technology. J. Mol. Biol. 402, 52–69.

    Article  CAS  PubMed  Google Scholar 

  89. Turan S., Galla M., Ernst E., Qiao J., Voelkel C., Bode J. 2011. Recombinase-mediated cassette exchange (RMCE): Traditional concepts and current challenges. J. Mol. Biol. 407, 193–221.

    Article  CAS  PubMed  Google Scholar 

  90. Baumann M., Gludovacz E., Sealover N., Bahr S., George H., Lin N., Kayser K., Borth N. 2017. Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnol. Bioeng. 114, 2616–2627.

    Article  CAS  PubMed  Google Scholar 

  91. Sheshukova E.V., Komarova T.V., Dorokhov Y.L. 2016. Plant factories for the production of monoclonal antibodies. Biochemistry (Moscow). 81 (10), 1118–1135.

    CAS  PubMed  Google Scholar 

  92. Komarova T.V., Sheshukova E.V., Dorokhov Y.L. 2018. Plant-made antibodies: Properties and therapeutic applications. Curr. Med. Chem. 25, 1–15.

    Article  CAS  Google Scholar 

  93. Yamauchi T., Iida S. 2015. Gene targeting in crop species with effective selection systems. In: Advances in New Technology for Targeted Modification of Plant Genomes. Eds. Zhang F., Puchta H., Thomson J.G. New York: Springer, pp. 91–111.

  94. Doetschman T., Gregg R.G., Maeda N., Hooper M.L., Melton D.W., Thompson S., Smithies, O. 1987. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. 330, 576–578.

    Article  CAS  PubMed  Google Scholar 

  95. Thomas K.R., Capecchi M.R. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 51, 503–512.

    Article  CAS  PubMed  Google Scholar 

  96. Paszkowski J., Baur M., Bogucki A., Potrykus I. 1988. Gene targeting in plants. EMBO J. 7, 4021–4026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Puchta H., Fauser F. 2013. Gene targeting in plants: 25 years later. Int. J. Dev. Biol. 57, 629–637.

    Article  CAS  PubMed  Google Scholar 

  98. Shaked H., Melamed-Bessudo C., Levy A.A. 2005. High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc. Natl. Acad. Sci. U. S. A. 102, 12265–12269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Da Ines O., White C.I. 2013. Gene site-specific insertion in plants. In: Topics in Current Genetica. Eds. Renault S., Duchateau P. Springer, vol. 23, pp. 287–315.

    Google Scholar 

  100. Chapman J.R., Taylor M.R., Boulton S.J. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 47, 497–510.

    Article  CAS  PubMed  Google Scholar 

  101. Voytas D.F. 2013. Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant. Biol. 64, 327–350.

    Article  CAS  PubMed  Google Scholar 

  102. Urnov F.D., Rebar E.J., Holmes M.C., Zhang H.S., Gregory P.D. 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646.

    Article  CAS  PubMed  Google Scholar 

  103. Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics. 188, 773–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186, 757–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Christian M., Voytas D.F. 2015. Engineered TAL effector proteins: Versatile reagents for manipulating plant genomes. In: Advances in New Technology for Targeted Modification of Plant Genomes. Eds. Zhang F., Puchta H., Thomson J.G. New York: Springer, pp. 55–72.

  106. Sprink T., Metje J., Hartung F. 2015. Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr. Opin. Biotechnol. 32, 47–53.

    Article  CAS  PubMed  Google Scholar 

  107. Barnett P. 2018. Transcription activator like effector nucleases (TALENs): A new, important, and versatile gene editing technique with a growing literature. Sci. Technol. Libraries. 37, 100–112.

    Article  Google Scholar 

  108. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L., Zhang F. 2013. Multiplex genome engineering using CRISPR/ Cas systems. Science. 1231143.

  109. Makarova K.S., Haft D.H., Barrangou R., Brouns S.J., Charpentier E., Horvath P., Moineau S.A., Mojica F.J.M., Wolf Y.I., Yakunin A.F., van der Oost J., Koonin E.V. 2011. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 9, 467–477.

    Article  CAS  PubMed  Google Scholar 

  110. Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hsu P.D., Lander E.S., Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157, 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brazelton Jr, V.A., Zarecor S., Wright D.A., Wang Y., Liu J., Chen K., Yang B., Lawrence-Dill C.J. 2015. A quick guide to CRISPR sgRNA design tools. GM Crops Food. 6, 266–276.

    Article  PubMed  Google Scholar 

  114. Ma X., Zhu Q., Chen Y., Liu Y.G. 2016. CRISPR/ Cas9 platforms for genome editing in plants: Developments and applications. Mol. Plant. 9, 961–974.

    Article  CAS  PubMed  Google Scholar 

  115. Puchta H. 2017. Applying CRISPR/Cas for genome engineering in plants: The best is yet to come. Curr. Opin. Plant Biol. 36, 1–8.

    Article  CAS  PubMed  Google Scholar 

  116. Khan M.H.U., Khan S.U., Muhammad A., Hu L., Yang Y., Fan C. 2018. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. J. Cell. Physiol. 233, 4578–4594.

    Article  CAS  PubMed  Google Scholar 

  117. Bannikov A.V., Lavrov A.V. 2017. CRISPR/Cas9, the king of genome editing tools. Mol. Biol. (Moscow). 51 (4), 514–525.

    Article  CAS  Google Scholar 

  118. Bayat H., Modarressi M.H., Rahimpour A. 2018). The conspicuity of CRISPR-Cpf1 system as a significant breakthrough in genome editing. Curr. Microbiol. 75, 107–115.

    Article  CAS  PubMed  Google Scholar 

  119. Langner T., Kamoun S., Belhaj K. 2018. CRISPR Crops: Plant genome editing toward disease resistance. Ann. Rev. Phytopathol. 56, 479–512.

    Article  CAS  Google Scholar 

  120. Lee K., Zhang Y., Kleinstiver B.P., Guo J.A., Aryee M.J., Miller J., Malzahn A., Zarecor S., Lawrence-Dill C.J., Joung J.K., Qi Y., Wang K. 2018. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol. J. https://doi.org/https://doi.org/10.1111/pbi.12982.

  121. Li S., Zhang X., Wang W., Guo X., Wu Z., Du W., Zhao Y., Xia L. 2018. Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol. Plant. 11, 995–998.

    Article  CAS  PubMed  Google Scholar 

  122. Gerlach W.L., Bedbrook J.R. 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hemleben V., Zentgraf U. 1994. Structural organization and regulation of transcription by RNA polymerase I of plant nuclear ribosomal RNA genes. In: Plant Promoters and Transcription Factors. Berlin: Springer, pp. 3‒24.

    Google Scholar 

  124. Garcia S., Cortes P.P., Fernàndez X., Garnatje T., Kovarik A. 2016. Organization, expression and evolution of rRNA genes in plant genomes. In: Recent Advances in Pharmaceutical Sciences. Eds. Muñoz-Torrero D., Domínguez A., Manresa A. Barcelona: Presas, vol. 6, pp. 49–75.

    Google Scholar 

  125. Copenhaver G.P., Pikaard C.S. 1996. RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J. 9, 259–272.

    Article  CAS  PubMed  Google Scholar 

  126. Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C.S. 2016. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev. 30, 177–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Earley K.W., Pontvianne F., Wierzbicki A.T., Blevins T., Tucker S., Costa-Nunes P., Pontes, O.M., Pikaard C.S. 2010. Mechanisms of HDA6-mediated rRNA gene silencing: Suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. Genes Dev. 24, 1119–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mohannath G., Pontvianne F., Pikaard C.S. 2016. Selective nucleolus organizer inactivation in Arabidopsis is a chromosome position-effect phenomenon. Proc. Natl. Acad. Sci. U. S. A. 113, 13426–13431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gruendler P., Unfried I., Pascher K., Schweizer D. 1991. rDNA intergenic region from Arabidopsis thaliana. Structural analysis, intraspecific variation and functional implications. J. Mol. Biol. 221, 1209–1222.

    Article  CAS  PubMed  Google Scholar 

  130. Doelling J.H., Gaudino R.J., Pikaard C.S. 1993. Functional analysis of Arabidopsis thaliana rRNA gene and spacer promoters in vivo and by transient expression. Proc. Natl. Acad. Sci. U. S. A. 90, 7528–7532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Drouin G., De Sa M.M. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol. Biol. Evol. 12, 481–493.

    CAS  PubMed  Google Scholar 

  132. Campell B.R., Song Y., Posch T.E., Cullis C.A., Town C.D. 1992. Sequence and organization of 5S ribosomal RNA encoding genes of Arabidopsis thaliana. Gene. 112, 225–228.

    Article  CAS  PubMed  Google Scholar 

  133. Fransz P., Armstrong S., Alonso-Blanco C., Fischer T.C., Torres-Ruiz R.A., Jones G. 1998. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 13, 867–876.

    Article  CAS  PubMed  Google Scholar 

  134. Cloix C., Tutois S., Yukawa Y., Mathieu O., Cuvilier C., Espagnol M.-C., Picard G., Tourmente S. 2002. Analysis of the 5S RNA pool in Arabidopsis thaliana: RNAs are heterogeneous and only two of the genomic 5S loci produce mature 5S RNA. Genome Res. 12, 132–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mathieu O., Jasencakova S., Vaillant I., Gendrel A.-V., Colot V., Schubert I., Tourmente S. 2003. Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell. 15, 2929–2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Maréchal-Drouard L., Weil J.H., Dietrich A. 1993. Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Plant Biol. 44, 13–32.

    Article  Google Scholar 

  137. Beier D., Stange N., Gross H.J., Beier H. 1991. Nuclear tRNA Tyr genes are highly amplified at a single chromosomal site in the genome of Arabidopsis thaliana. Mol. Gen. Genet. 225, 72–80.

    Article  CAS  PubMed  Google Scholar 

  138. Arimbasseri A.G., Maraia R.J. 2016. RNA polymerase III advances: Structural and tRNA functional views. Trends Biochem. Sci. 41, 546–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Eirín-López J.M., González-Romero R., Dryhurst D., Méndez J., Ausió J. 2009. Long-term evolution of histone families: Old notions and new insights into their mechanisms of diversification across eukaryotes. In: Evolutionary Biology. Ed. Pontarotti P. Berlin: Springer, pp. 139–162.

    Google Scholar 

  140. Chaubet N., Philipps G., Gigot C. 1989. Organization of the histone H3 and H4 multigenic families in maize and in related genomes. Mol. Gen. Genet. 219, 404–412.

    Article  CAS  Google Scholar 

  141. Kanazin V., Blake T., Shoemaker R.C. 1996. Organization of the histone H3 genes in soybean, barley and wheat. Mol. Gen. Genet. 250, 137–147.

    Article  CAS  PubMed  Google Scholar 

  142. Li M., Fang Y. 2015. Histone variants: The artists of eukaryotic chromatin. Sci. China Life Sci. 58, 232–239.

    Article  CAS  PubMed  Google Scholar 

  143. Ingouff M., Berger F. 2010. Histone3 variants in plants. Chromosoma. 119, 27–33.

    Article  CAS  PubMed  Google Scholar 

  144. Kosterin O.E., Bogdanova V.S., Gorel F.L., Rozov S.M., Trusov Y.A., Berdnikov V.A. 1994. Histone H1 of the garden pea (Pisum sativum L.): Composition, developmental changes, allelic polymorphism and inheritance. Plant Sci. 101, 189–202.

    Article  CAS  Google Scholar 

  145. Henikoff S., Ahmad K. 2005. Assembly of variant histones into chromatin. Annu. Rev. Cell. Dev. Biol. 21, 133–153.

    Article  CAS  PubMed  Google Scholar 

  146. McDowell J.M., Huang S., McKinney E.C., An Y.Q., Meagher R.B. 1996. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics. 142, 587–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Šlajcherová K., Fišerová J., Fischer L., Schwarzerová K. 2012. Multiple actin isotypes in plants: Diverse genes for diverse roles? Front. Plant Sci. 3, 226.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Silflow C.D., Oppenheimer D.G., Kopozak S.D., Ploense S.E., Ludwig S.R., Haas N., Peter Snustad D. 1987. Plant tubulin genes: Structure and differential expression during development. Genesis. 8, 435–460.

    CAS  Google Scholar 

  149. Oakley R.V., Wang Y.S., Ramakrishna W., Harding S.A., Tsai C.J. 2007. Differential expansion and expression of α-and β-tubulin gene families in Populus. Plant Physiol. 145, 961–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Breviario D. 2008. Plant tubulin genes: Regulatory and evolutionary aspects. In: Plant Microtubules. Plant Cell Monographs. Ed. Nick P. Berlin, Heidelberg: Springer, vol. 11, pp. 207–232.

    Google Scholar 

  151. Callis J., Carpenter T., Sun C.W., Vierstra R.D. 1995. Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics. 139, 921–939.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Callis J. 2014. The ubiquitination machinery of the ubiquitin system. The Arabidopsis Book, 12, e0174.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Radici L., Bianchi M., Crinelli R., Magnani M. 2013. Ubiquitin C gene: Structure, function, and transcriptional regulation. Adv. Biosci. Biotechnol. 4, 1057–1062.

    Article  CAS  Google Scholar 

  154. Bachmair A., Finley D., Varshavsky A. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 234, 179–186.

    Article  CAS  PubMed  Google Scholar 

  155. Gonda D., Bachmair A., Wunning I., Tobias J., Lane W., Varshavsky A. 1989. Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712.

    CAS  PubMed  Google Scholar 

  156. Hondred D., Walker J.M., Mathews D.E., Vierstra R.D. 1999. Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiol. 119, 713–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Rozov.

Additional information

Translated by A. Barkhash

Abbreviations: UTR, untranslated regions; IGS, intergenic spacer; ETS, external transcribed spacer; ITS, internal transcribed spacer; CGI, CpG islands; IRES, internal ribosome entry site; 3'-CITE, 3' cap-independent translation enhancer; MAR, matrix attachment regions; IME, intron mediated enhancement; RMCE, recombinase mediated cassette exchange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozov, S.M., Deineko, E.V. Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions. Mol Biol 53, 157–175 (2019). https://doi.org/10.1134/S0026893319020146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319020146

Keywords:

Navigation