Skip to main content
Log in

Heritable transgene expression pattern imposed onto maize ubiquitin promoter by maize adh-1 matrix attachment regions: tissue and developmental specificity in maize transgenic plants

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Matrix attachment regions (MARs) have been used to enhance transgene expression and to reduce transgene expression instability in various organisms. In plants, contradictory data question the role of MAR sequences. To assess the use of MAR sequences in maize, we have used two well-characterized MARs from the maize adh-1 region. The MARs have been cloned either 5′ to or at both sides of a reporter gene expression cassette to reconstitute a MAR-based domain. Histochemical staining revealed a new transgene expression pattern in roots of regenerated plants and their progeny. Furthermore, MARs systematically induced variegation. We show here that maize adh-1 MARs are able to modify transgene expression patterns as a heritable trait, giving a new and complementary outcome following use of MARs in genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–F

Similar content being viewed by others

Abbreviations

adh-1 :

Alcohol dehydrogenase 1

GUS :

β-Glucuronidase

HSC80 :

Heat shock cognate 80 gene

MAR :

Matrix attachment regions

Rsyn-7 :

Root specific synthetic promoter

References

  • Allen GC, Hall GE Jr, Childs LC, Weissinger AK, Spiker S, Thompson WF (1993) Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5:603–613

    Article  CAS  PubMed  Google Scholar 

  • Allen GC, Hall G Jr, Michalowski S, Newman W, Spiker S, Weissinger AK, Thompson WF (1996) High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 8:899–913

    Google Scholar 

  • Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376

    CAS  PubMed  Google Scholar 

  • Attal J, Cajero-Juarez M, Petitclerc D, Theron MC, Stinnakre MG, Bearzotti M, Kann G, Houdebine LM (1995–1996) The effect of matrix attached regions (MAR) and specialized chromatin structure (SCS) on the expression of gene constructs in cultured cells and in transgenic mice. Mol Biol Rep 22:37–46

    CAS  Google Scholar 

  • Avramova Z, Bennetzen JL (1993) Isolation of matrices from maize leaf nuclei: identification of a matrix-binding site adjacent to the Adh1 gene. Plant Mol Biol 22:1135–1143

    CAS  PubMed  Google Scholar 

  • Avramova Z, SanMiguel P, Georgieva E, Bennetzen JL (1995) Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. Plant Cell 7:1667–1680

    CAS  PubMed  Google Scholar 

  • Bonifer C (1999) Long-distance chromatin mechanisms controlling tissue-specific gene locus activation. Gene 238:277–289

    Article  CAS  PubMed  Google Scholar 

  • Brouwer C, Bruce W, Maddock S, Avramova Z, Bowen B (2002) Suppression of transgene silencing by matrix attachment regions in maize: a dual role for the maize 5′ ADH1 matrix attachment region. Plant Cell 14:2251–2264

    Article  CAS  PubMed  Google Scholar 

  • Caldovic L, Agalliu D, Hackett PB (1999) Position-independent expression of transgenes in zebrafish. Transgenic Res 8:321–334

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Targolli J, Wu R (2001) Tobacco matrix attachment region sequence increased transgene expression levels in rice plants. Mol Breeding 7:317–327

    Article  CAS  Google Scholar 

  • Chinn AM, Payne SR, Comai L (1996) Variegation and silencing of the Heat Shock Cognate 80 gene are relieved by a bipartite downstream regulatory element. Plant J 9:325–339

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    CAS  PubMed  Google Scholar 

  • Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    CAS  PubMed  Google Scholar 

  • van der Geest AH, Hall TC (1997) The beta-phaseolin 5′ matrix attachment region acts as an enhancer facilitator. Plant Mol Biol 33:553–557

    Article  CAS  PubMed  Google Scholar 

  • Girard F, Bello B, Laemmli UK, Gehring WJ (1998) In vivo analysis of scaffold-associated regions in Drosophila: a synthetic high-affinity SAR binding protein suppresses position effect variegation. EMBO J 17:2079–2085

    Article  CAS  PubMed  Google Scholar 

  • Holmes-Davis R, Comai L (2002) The matrix attachment regions (MARs) associated with the Heat Shock Cognate 80 gene (HSC80) of tomato represent specific regulatory elements. Mol Genet Genomics 266:891–898

    Article  CAS  PubMed  Google Scholar 

  • Kohwi-Shigematsu T, Maass K, Bode J (1997) A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry 36:12005–12010

    Article  CAS  PubMed  Google Scholar 

  • Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111:151–154

    CAS  PubMed  Google Scholar 

  • Liu J, Bramblett D, Zhu Q, Lozano M, Kobayashi R, Ross SR, Dudley JP (1997) The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression. Mol Cell Biol 17:5275–5287

    CAS  PubMed  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    Article  CAS  PubMed  Google Scholar 

  • Mankin SL, Allen GC, Phelan T, Spiker S, Thompson WF (2003) Elevation of transgene expression level by flanking matrix attachment regions (MAR) is promoter dependent: a study of the interactions of six promoters with the RB7 3′ MAR. Transgenic Res 12:3–12

    Article  CAS  PubMed  Google Scholar 

  • McKnight RA, Shamay A, Sankaran L, Wall RJ, Hennighausen L (1992) Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci USA 89:6943–6947

    CAS  PubMed  Google Scholar 

  • Mlynarova L, Jansen RC, Conner AJ, Stiekema WJ, Nap JP (1995) The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7:599–609

    Google Scholar 

  • Mlynarova L, Keizer L, Stiekema WJ, Nap JP (1996) Approaching the lower limits of transgene variability. Plant Cell 8:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Muller BF, Paulsen D, Deppert W (1996) Specific binding of MAR/SAR DNA-elements by mutant p53. Oncogene 12:1941–1952

    CAS  PubMed  Google Scholar 

  • Namciu SJ, Blochlinger KB, Fournier RE (1998) Human matrix attachment regions insulate transgene expression from chromosomal position effects in Drosophila melanogaster. Mol Cell Biol 18:2382–2391

    CAS  PubMed  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    CAS  PubMed  Google Scholar 

  • Piquemal J, Chamayou S, Nadaud I, Beckert M, Barriere Y, Mila I, Lapierre C, Rigau J, Puigdomenech P, Jauneau A, Digonnet C, Boudet AM, Goffner D, Pichon M (2002) Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol 130:1675–1685

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor University Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sidorenko L, Bruce W, Maddock S, Tagliani L, Li X, Daniels M, Peterson T (2003) Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plants. Transgenic Res 12:137–154

    Article  CAS  PubMed  Google Scholar 

  • Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697

    CAS  PubMed  Google Scholar 

  • Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL, Avramova Z (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414

    CAS  PubMed  Google Scholar 

  • Tikhonov AP, Bennetzen JL, Avramova ZV (2000) Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. Plant Cell 12:249–264

    Article  CAS  PubMed  Google Scholar 

  • Udvardy A (1999) Dividing the empire: boundary chromatin elements delimit the territory of enhancers. EMBO J 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Vain P, Worland B, Kohli A, Snape J, Christou P, Allen G, Thompson W (1999) Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J 18:233–242

    CAS  Google Scholar 

  • Van Leeuwen W, Mlynarova L, Nap JP, van der Plas LH, van der Krol AR (2001) The effect of MAR elements on variation in spatial and temporal regulation of transgene expression. Plant Mol Biol 47:543–554

    PubMed  Google Scholar 

  • Vaucheret H, Elmayan T, Thierry D, van der Geest A, Hall T, Conner AJ, Mlynarova L, Nap JP (1998) Flank matrix attachment regions (MARs) from chicken, bean, yeast or tobacco do not prevent homology-dependent trans-silencing in transgenic tobacco plants. Mol Gen Genet 259:388–392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Z. Avramova for providing stimulating discussion and for the 5′ and 3′ maize adh-1 MARs. The authors are obliged to Peter Quail for the gift of the pAHC25 plasmid. We are also grateful to Dr. H. Vaucheret for his comments on the manuscript. This study would not have been possible without the greenhouse and culture chamber team (Richard Blanc, Jean-Claude Girard, Christophe Serre and Christophe Troquier) who provided us with excellent plant growth conditions. This work was supported by INRA and the French Ministry for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Beckert.

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torney, F., Partier, A., Says-Lesage, V. et al. Heritable transgene expression pattern imposed onto maize ubiquitin promoter by maize adh-1 matrix attachment regions: tissue and developmental specificity in maize transgenic plants. Plant Cell Rep 22, 931–938 (2004). https://doi.org/10.1007/s00299-004-0779-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0779-x

Keywords

Navigation