Skip to main content
Log in

Histone3 variants in plants

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Regulation of chromatin activity by covalent histone modifications has been long recognized. Histones that constitute the nucleosome are encoded by large families of genes and display a strong degree of conservation. However, histone variants exist and it is becoming clear that they play important roles in genome regulation. While most studies of the role of histone3 (H3) variants in transcriptional control comes from animal models, emerging data in plants suggest functional conservation, although plant-specific roles are likely. We review these data and speculate on the biological significance of H3 variants in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad K, Henikoff S (2002) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 99(Suppl 4):16477–16484

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Hake SB (2006) The nucleosome: a little variation goes a long way. Biochem Cell Biol 84:505–517

    Article  CAS  PubMed  Google Scholar 

  • Bonnefoy E, Orsi GA, Couble P, Loppin B (2007) The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization. PLoS Genet 3:1991–2006

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijo JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    Article  CAS  PubMed  Google Scholar 

  • Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, Twell D (2009) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet 5:e1000430

    Article  PubMed  CAS  Google Scholar 

  • Caron C, Govin J, Rousseaux S, Khochbin S (2005) How to pack the genome for a safe trip. Prog Mol Subcell Biol 38:65–89

    Article  CAS  PubMed  Google Scholar 

  • Chaboute ME, Chaubet N, Gigot C, Philipps G (1993) Histones and histone genes in higher plants: structure and genomic organization. Biochimie 75:523–531

    Article  CAS  PubMed  Google Scholar 

  • Chaubet-Gigot N, Kapros T, Flenet M, Kahn K, Gigot C, Waterborg JH (2001) Tissue-dependent enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis. Plant Mol Biol 45:17–30

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Tan JL, Ingouff M, Sundaresan V, Berger F (2008) Chromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development 135:65–73

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Hyun Y, Kang MJ, In Yun H, Yun JY, Lister C, Dean C, Amasino RM, Noh B, Noh YS, Choi Y (2009) Resetting and regulation of flowering locus C expression during arabidopsis reproductive development. Plant J 57:918–931

    Article  CAS  PubMed  Google Scholar 

  • Dalal Y, Furuyama T, Vermaak D, Henikoff S (2007) Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci U S A 104:15974–15981

    Article  CAS  PubMed  Google Scholar 

  • Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10:520–527

    Article  CAS  PubMed  Google Scholar 

  • Farrona S, Coupland G, Turck F (2008) The impact of chromatin regulation on the floral transition. Semin Cell Dev Biol 19:560–573

    Article  CAS  PubMed  Google Scholar 

  • Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 23:192–199

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Dennis ES (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17:1978–1983

    Article  CAS  PubMed  Google Scholar 

  • Foltz DR, Jansen LE, Bailey AO, Yates JR 3 rd, Bassett EA, Wood S, Black BE, Cleveland DW (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484

    Article  CAS  PubMed  Google Scholar 

  • Furuyama T, Dalal Y, Henikoff S (2006) Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci U S A 103:6172–6177

    Article  CAS  PubMed  Google Scholar 

  • Gendler K, Paulsen T, Napoli C (2008) ChromDB: the chromatin database. Nucleic Acids Res 36:D298–D302

    Article  CAS  PubMed  Google Scholar 

  • Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thevenon J, Catena R, Davidson I, Garin J, Khochbin S, Caron C (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176:283–294

    Article  CAS  PubMed  Google Scholar 

  • Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, Grossniklaus U, Berger F (2004) Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971–2981

    Article  CAS  PubMed  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature . doi:10.1038/nature08162

    PubMed  Google Scholar 

  • He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10:30–35

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Dean C (2004) Control of Arabidopsis flowering: the chill before the bloom. Development 131:3829–3838

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21:133–153

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Furuyama T, Ahmad K (2004) Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20:320–326

    Article  CAS  PubMed  Google Scholar 

  • Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130:2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Houlard M, Berlivet S, Probst AV, Quivy JP, Hery P, Almouzni G, Gerard M (2006) CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2:e181

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TF, Hakim O, Ohad N, Fischer RL (2003) From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci 8:439–445

    Article  CAS  PubMed  Google Scholar 

  • Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F (2007) Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 17:1032–1037

    Article  CAS  PubMed  Google Scholar 

  • Johnson L, Mollah S, Garcia BA, Muratore TL, Shabanowitz J, Hunt DF, Jacobsen SE (2004) Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res 32:6511–6518

    Article  CAS  PubMed  Google Scholar 

  • Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142

    Article  CAS  PubMed  Google Scholar 

  • Klapholz B, Dietrich BH, Schaffner C, Heredia F, Quivy JP, Almouzni G, Dostatni N (2009) CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells. Chromosoma 118:235–248

    Article  CAS  PubMed  Google Scholar 

  • Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A, Fyodorov DV (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317:1087–1090

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549

    Article  CAS  PubMed  Google Scholar 

  • Lewis JD, Song Y, de Jong ME, Bagha SM, Ausio J (2003) A walk though vertebrate and invertebrate protamines. Chromosoma 111:473–482

    Article  PubMed  Google Scholar 

  • Lopez-Fernandez LA, Lopez-Alanon DM, Castaneda V, Krimer DB, del Mazo J (1997) Developmental expression of H3.3A variant histone mRNA in mouse. Int J Dev Biol 41:699–703

    CAS  PubMed  Google Scholar 

  • Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–1390

    Article  CAS  PubMed  Google Scholar 

  • Loyola A, Almouzni G (2007) Marking histone H3 variants: how, when and why? Trends Biochem Sci 32:425–433

    Article  CAS  PubMed  Google Scholar 

  • Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24:309–316

    Article  CAS  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891

    Article  CAS  PubMed  Google Scholar 

  • McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 101:1525–1530

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JA (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol 53:423–442

    Article  CAS  PubMed  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Ng RK, Gurdon JB (2008) Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10:102–109

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Endo M, Singh MB, Bhalla PL (2005) Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant J 44:557–568

    Article  CAS  PubMed  Google Scholar 

  • Ono T, Kaya H, Takeda S, Abe M, Ogawa Y, Kato M, Kakutani T, Mittelsten Scheid O, Araki T, Shibahara K (2006) Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes Cells 11:153–162

    Article  CAS  PubMed  Google Scholar 

  • Ooi SL, Henikoff S (2007) Germline histone dynamics and epigenetics. Curr Opin Cell Biol 19:257–265

    Article  CAS  PubMed  Google Scholar 

  • Ooi SL, Priess JR, Henikoff S (2006) Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLoS Genet 2:e97

    Article  PubMed  CAS  Google Scholar 

  • Orsi GA, Couble P, Loppin B (2009) Epigenetic and replacement roles of histone variant H3.3 in reproduction and development. Int J Dev Biol 53:231–243

    Article  CAS  PubMed  Google Scholar 

  • Phelps-Durr TL, Thomas J, Vahab P, Timmermans MC (2005) Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell 17:2886–2898

    Article  CAS  PubMed  Google Scholar 

  • Quivy JP, Grandi P, Almouzni G (2001) Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 20:2015–2027

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Reyes JC (2006) Chromatin modifiers that control plant development. Curr Opin Plant Biol 9:21–27

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux S, Reynoird N, Escoffier E, Thevenon J, Caron C, Khochbin S (2008) Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 16:492–503

    CAS  PubMed  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Santenard A, Torres-Padilla ME (2009) Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4:80–84

    Article  CAS  PubMed  Google Scholar 

  • Schonrock N, Exner V, Probst A, Gruissem W, Hennig L (2006) Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem 281:9560–9568

    Article  PubMed  CAS  Google Scholar 

  • Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, Peacock WJ (2008) Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc Natl Acad Sci U S A 105:2214–2219

    Article  CAS  PubMed  Google Scholar 

  • Stratmann T, Mas P (2008) Chromatin, photoperiod and the Arabidopsis circadian clock: a question of time. Semin Cell Dev Biol 19:554–559

    Article  CAS  PubMed  Google Scholar 

  • Tachiwana H, Osakabe A, Kimura H, Kurumizaka H (2008) Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro. Nucleic Acids Res 36:2208–2218

    Article  CAS  PubMed  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    Article  CAS  PubMed  Google Scholar 

  • Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Tanaka I (1995) The appearance of male gamete-specific histones gH2B and gH3 during pollen development in Lilium longiflorum. Dev Biol 169:210–217

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Kinoshita Y, Xu ZJ, Ide N, Ono M, Akahori Y, Tanaka I, Inoue M (2000) Unusual core histones specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma 108:491–500

    Article  CAS  PubMed  Google Scholar 

  • Verbsky ML, Richards EJ (2001) Chromatin remodeling in plants. Curr Opin Plant Biol 4:494–500

    Article  CAS  PubMed  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104

    Article  CAS  PubMed  Google Scholar 

  • Waterborg JH (1991) Multiplicity of Histone H3 variants in wheat, barley, rice, and maize. Plant Physiol 96:453–458

    Article  PubMed  Google Scholar 

  • Waterborg JH (1992) Existence of two histone H3 variants in dicotyledonous plants and correlation between their acetylation and plant genome size. Plant Mol Biol 18:181–187

    Article  PubMed  Google Scholar 

  • Waterborg JH, Robertson AJ (1996) Common features of analogous replacement histone H3 genes in animals and plants. J Mol Evol 43:194–206

    Article  CAS  PubMed  Google Scholar 

  • Wellman SE, Casano PJ, Pilch DR, Marzluff WF, Sittman DB (1987) Characterization of mouse H3.3-like histone genes. Gene 59:29–39

    Article  CAS  PubMed  Google Scholar 

  • Wells D, Hoffman D, Kedes L (1987) Unusual structure, evolutionary conservation of non-coding sequences and numerous pseudogenes characterize the human H3.3 histone multigene family. Nucleic Acids Res 15:2871–2889

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP, Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61:379–422

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Swoboda I, Bhalla PL, Singh MB (1999) Male gametic cell-specific expression of H2A and H3 histone genes. Plant Mol Biol 39:607–614

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Berger.

Additional information

Communicated by P. Shaw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingouff, M., Berger, F. Histone3 variants in plants. Chromosoma 119, 27–33 (2010). https://doi.org/10.1007/s00412-009-0237-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0237-1

Keywords

Navigation