Skip to main content
Log in

Mobility of Nuclear Components and Genome Functioning

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cell nucleus is characterized by strong compartmentalization of structural components in its three-dimensional space. Certain genomic functions are accompanied by changes in the localization of chromatin loci and nuclear bodies. Here we review recent data on the mobility of nuclear components and the role of this mobility in genome functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benabdallah, N. S., and Bickmore, W. A. (2015) Regulatory domains and their mechanisms, Cold Spring Harb. Symp. Quant. Biol., 80, 45–51.

    Article  PubMed  Google Scholar 

  2. Erokhin, M., Vassetzky, Y., Georgiev, P., and Chetverina, D. (2015) Eukaryotic enhancers: common features, regula-tion, and participation in diseases, Cell. Mol. Life Sci., 72, 2361–2375.

    Article  PubMed  CAS  Google Scholar 

  3. Dion, V., and Gasser, S. M. (2013) Chromatin movement in the maintenance of genome stability, Cell, 152, 1355–1364.

    Article  PubMed  CAS  Google Scholar 

  4. Dekker, J., and Misteli, T. (2015) Long-range chromatin interactions, Cold Spring Harb. Perspect. Biol., 7, a019356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Shachar, S., and Misteli, T. (2017) Causes and conse-quences of nuclear gene positioning, J. Cell. Sci., 130, 1501–1508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kuznetsova, M. A., and Sheval, E. V. (2016) Chromatin fibers: from classical descriptions to modern interpretation, Cell. Biol. Int., 40, 1140–1151.

    Article  PubMed  Google Scholar 

  7. Finch, J. T., and Klug, A. (1976) Solenoidal model for superstructure in chromatin, Proc. Natl. Acad. Sci. USA, 73, 1897–1901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Woodcock, C. L., Frado, L. L., and Rattner, J. B. (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement, J. Cell Biol., 99, 42–52.

    Article  PubMed  CAS  Google Scholar 

  9. Grigoryev, S. A., Arya, G., Correll, S., Woodcock, C. L., and Schlick, T. (2009) Evidence for heteromorphic chro-matin fibers from analysis of nucleosome interactions, Proc. Natl. Acad. Sci. USA, 106, 13317–13322.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McDowall, A. W., Smith, J. M., and Dubochet, J. (1986) Cryo-electron microscopy of vitrified chromosomes in situ, EMBO J., 5, 1395–1402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Eltsov, M., Maclellan, K. M., Maeshima, K., Frangakis, A. S., and Dubochet, J. (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ, Proc. Natl. Acad. Sci. USA, 105, 19732–19737.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gan, L., Ladinsky, M. S., and Jensen, G. J. (2013) Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes, Chromosoma, 122, 377–386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Cuellar, L. K., Forster, F., Hyman, A. A., Plitzko, J. M., and Baumeister, W. (2016) Visualizing the molecular soci-ology at the HeLa cell nuclear periphery, Science, 351, 969–972.

    Article  PubMed  CAS  Google Scholar 

  14. Razin, S. V., and Gavrilov, A. A. (2014) Chromatin without the 30-nm fiber: constrained disorder instead of hierarchi-cal folding, Epigenetics, 9, 653–657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Maeshima, K., Hihara, S., and Eltsov, M. (2010) Chromatin structure: does the 30-nm fibre exist in vivo? Curr. Opin. Cell Biol., 22, 291–297.

    Article  PubMed  CAS  Google Scholar 

  16. Hihara, S., Pack, C.-G., Kaizu, K., Tani, T., Hanafusa, T., Nozaki, T., Takemoto, S., Yoshimi, T., Yokota, H., Imamoto, N., Sako, Y., Kinjo, M., Takahashi, K., Nagai, T., and Maeshima, K. (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells, Cell Rep., 2, 1645–1656.

    Article  PubMed  CAS  Google Scholar 

  17. Nozaki, T., Kaizu, K., Pack, C.-G., Tamura, S., Tani, T., Hihara, S., Nagai, T., Takahashi, K., and Maeshima, K. (2013) Flexible and dynamic nucleosome fiber in living mammalian cells, Nucleus, 4, 349–356.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nozaki, T., Imai, R., Tanbo, M., Nagashima, R., Tamura, S., Tani, T., Joti, Y., Tomita, M., Hibino, K., Kanemaki, M. T., Wendt, K. S., Okada, Y., Nagai, T., and Maeshima, K. (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging, Mol. Cell, 67, 282–293.

    Article  PubMed  CAS  Google Scholar 

  19. Branco, M. R., and Pombo, A. (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations, PLoS Biol., 4, e138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Boettiger, A. N., Bintu, B., Moffitt, J. R., Wang, S., Beliveau, B. J., Fudenberg, G., Imakaev, M., Mirny, L. A., Wu, C.-T., and Zhuang, X. (2016) Super-resolution imag-ing reveals distinct chromatin folding for different epige-netic states, Nature, 529, 418–422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liang, Z., Zickler, D., Prentiss, M., Chang, F. S., Witz, G., Maeshima, K., and Kleckner, N. (2015) Chromosomes progress to metaphase in multiple discrete steps via global compaction/expansion cycles, Cell, 161, 1124–1137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nagasaka, K., Hossain, M. J., Roberti, M. J., Ellenberg, J., and Hirota, T. (2016) Sister chromatid resolution is an intrinsic part of chromosome organization in prophase, Nat. Cell Biol., 18, 692–699.

    Article  PubMed  CAS  Google Scholar 

  23. Robinett, C. C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A., and Belmont, A. S. (1996) In vivo localiza-tion of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recog-nition, J. Cell Biol., 135, 1685–1700.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., and Huang, B. (2013) Dynamic imaging of genomic loci in living human cells by an opti-mized CRISPR/Cas system, Cell, 155, 1479–1491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ma, H., Naseri, A., Reyes-Gutierrez, P., Wolfe, S. A., Zhang, S., and Pederson, T. (2015) Multicolor CRISPR labeling of chromosomal loci in human cells, Proc. Natl. Acad. Sci. USA, 112, 3002–3007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ma, H., Tu, L.-C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., and Pederson, T. (2016) Multiplexed label-ing of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow, Nat. Biotechnol., 34, 528–530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dreissig, S., Schiml, S., Schindele, P., Weiss, O., Rutten, T., Schubert, V., Gladilin, E., Mette, M. F., Puchta, H., and Houben, A. (2017) Live-cell CRISPR imaging in plants reveals dynamic telomere movements, Plant J., 91, 565–573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Saad, H., Gallardo, F., Dalvai, M., Tanguy-le-Gac, N., Lane, D., and Bystricky, K. (2014) DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells, PLoS Genet., 10, e1004187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Germier, T., Kocanova, S., Walther, N., Bancaud, A., Shaban, H. A., Sellou, H., Politi, A. Z., Ellenberg, J., Gallardo, F., and Bystricky, K. (2017) Real-time imaging of a single gene reveals transcription-initiated local confine-ment, Biophys. J., 113, 1383–1394.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nat. Rev. Genet., 8, 104–115.

    Article  PubMed  CAS  Google Scholar 

  31. Marshall, W. F., Straight, A., Marko, J. F., Swedlow, J., Dernburg, A., Belmont, A., Murray, A. W., Agard, D. A., and Sedat, J. W. (1997) Interphase chromosomes undergo constrained diffusional motion in living cells, Curr. Biol., 7, 930–939.

    Article  PubMed  CAS  Google Scholar 

  32. Mine-Hattab, J., and Rothstein, R. (2013) DNA in motion during double-strand break repair, Trends Cell Biol., 23, 529–536.

    Article  PubMed  CAS  Google Scholar 

  33. Bystricky, K., Van Attikum, H., Montiel, M.-D., Dion, V., Gehlen, L., and Gasser, S. M. (2009) Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex, Mol. Cell. Biol., 29, 835–848.

    Article  PubMed  CAS  Google Scholar 

  34. Hajjoul, H., Mathon, J., Ranchon, H., Goiffon, I., Mozziconacci, J., Albert, B., Carrivain, P., Victor, J.-M., Gadal, O., Bystricky, K., and Bancaud, A. (2013) High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome, Genome Res., 23, 1829–1838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tamm, M. V., Nazarov, L. I., Gavrilov, A. A., and Chertovich, A. V. (2015) Anomalous diffusion in fractal globules, Phys. Rev. Lett., 114, 178102.

    Article  PubMed  CAS  Google Scholar 

  36. Ma, H., Tu, L.-C., Naseri, A., Chung, Y.-C., Grunwald, D., Zhang, S., and Pederson, T. (2017) CRISPR-based DNA imaging in living cells reveals cell cycle-dependent chromosome dynamics, bioRxiv, 195966.

    Google Scholar 

  37. Pliss, A., Malyavantham, K., Bhattacharya, S., Zeitz, M., and Berezney, R. (2009) Chromatin dynamics is correlated with replication timing, Chromosoma, 118, 459–470.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Krawczyk, P. M., Borovski, T., Stap, J., Cijsouw, T., ten Cate, R., Medema, J. P., Kanaar, R., Franken, N. A. P., and Aten, J. A. (2012) Chromatin mobility is increased at sites of DNA double-strand breaks, J. Cell. Sci., 125, 2127–2133.

    Article  PubMed  CAS  Google Scholar 

  39. Neumann, F. R., Dion, V., Gehlen, L. R., Tsai-Pflugfelder, M., Schmid, R., Taddei, A., and Gasser, S. M. (2012) Targeted INO80 enhances subnuclear chromatin move-ment and ectopic homologous recombination, Genes Dev., 26, 369–383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ochiai, H., Sugawara, T., and Yamamoto, T. (2015) Simultaneous live imaging of the transcription and nuclear position of specific genes, Nucleic Acids Res., 43, e127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sorokin, D. V., Peterlik, I., Tektonidis, M., Rohr, K., and Matula, P. (2018) Non-rigid contour-based registration of cell nuclei in 2D live cell microscopy images using a dynamic elasticity model, IEEE Trans. Med. Imaging, 37, 173–184.

    Article  PubMed  Google Scholar 

  42. Zidovska, A., Weitz, D. A., and Mitchison, T. J. (2013) Micron-scale coherence in interphase chromatin dynam-ics, Proc. Natl. Acad. Sci. USA, 110, 15555–15560.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jaunin, F., Visser, A. E., Cmarko, D., Aten, J. A., and Fakan, S. (2000) Fine structural in situ analysis of nascent DNA movement following DNA replication, Exp. Cell Res., 260, 313–323.

    Article  PubMed  CAS  Google Scholar 

  44. Jaunin, F., and Fakan, S. (2002) DNA replication and nuclear architecture, J. Cell. Biochem., 85, 1–9.

    Article  PubMed  CAS  Google Scholar 

  45. Arifulin, E. A. (2015) Ultrastructural organization of repli-cating chromatin in prematurely condensed chromosomes, Biopolym. Cell, 31, 249–254.

    Article  Google Scholar 

  46. Leonhardt, H., Rahn, H. P., Weinzierl, P., Sporbert, A., Cremer, T., Zink, D., and Cardoso, M. C. (2000) Dynamics of DNA replication factories in living cells, J. Cell. Biol., 149, 271–280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pliss, A., Malyavantham, K. S., Bhattacharya, S., and Berezney, R. (2013) Chromatin dynamics in living cells: identification of oscillatory motion, J. Cell. Physiol., 228, 609–616.

    Article  PubMed  CAS  Google Scholar 

  48. Chagin, V. O., Casas-Delucchi, C. S., Reinhart, M., Schermelleh, L., Markaki, Y., Maiser, A., Bolius, J. J., Bensimon, A., Fillies, M., Domaing, P., Rozanov, Y. M., Leonhardt, H., and Cardoso, M. C. (2016) 4D visualiza-tion of replication foci in mammalian cells corresponding to individual replicons, Nat. Commun., 7, 11231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nakamura, H., Morita, T., and Sato, C. (1986) Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus, Exp. Cell Res., 165, 291–297.

    Article  PubMed  CAS  Google Scholar 

  50. O’Keefe, R. T., Henderson, S. C., and Spector, D. L. (1992) Dynamic organization of DNA replication in mam-malian cell nuclei: spatially and temporally defined replica-tion of chromosome-specific alpha-satellite DNA sequences, J. Cell. Biol., 116, 1095–1110.

    Article  PubMed  Google Scholar 

  51. Jackson, D. A., and Pombo, A. (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells, J. Cell. Biol., 140, 1285–1295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Xiang, W., Julia Roberti, M., Heriche, J.-K., Huet, S., Alexander, S., and Ellenberg, J. (2017) Correlative live and super-resolution imaging reveals the dynamic structure of replication domains, bioRxiv, 189373.

    Google Scholar 

  53. Dion, V., Kalck, V., Horigome, C., Towbin, B. D., and Gasser, S. M. (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombi-nation machinery, Nat. Cell Biol., 14, 502–509.

    Article  CAS  Google Scholar 

  54. Mine-Hattab, J., and Rothstein, R. (2012) Increased chro-mosome mobility facilitates homology search during recombination, Nat. Cell Biol., 14, 510–517.

    Article  PubMed  CAS  Google Scholar 

  55. Seeber, A., Dion, V., and Gasser, S. M. (2013) Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage, Genes Dev., 27, 1999–2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Seeber, A., and Gasser, S. M. (2017) Chromatin organiza-tion and dynamics in double-strand break repair, Curr. Opin. Genet. Dev., 43, 9–16.

    Article  PubMed  CAS  Google Scholar 

  57. Nagai, S., Dubrana, K., Tsai-Pflugfelder, M., Davidson, M. B., Roberts, T. M., Brown, G. W., Varela, E., Hediger, F., Gasser, S. M., and Krogan, N. J. (2008) Functional tar-geting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase, Science, 322, 597–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lisby, M., Mortensen, U. H., and Rothstein, R. (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre, Nat. Cell Biol., 5, 572–577.

    Article  PubMed  CAS  Google Scholar 

  59. Dion, V., Kalck, V., Seeber, A., Schleker, T., and Gasser, S. M. (2013) Cohesin and the nucleolus constrain the mobili-ty of spontaneous repair foci, EMBO Rep., 14, 984–991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kruhlak, M. J., Celeste, A., Dellaire, G., Fernandez-Capetillo, O., Muller, W. G., McNally, J. G., Bazett-Jones, D. P., and Nussenzweig, A. (2006) Changes in chromatin structure and mobility in living cells at sites of DNA dou-ble-strand breaks, J. Cell. Biol., 172, 823–834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Falk, M., Lukasova, E., Gabrielova, B., Ondrej, V., and Kozubek, S. (2007) Chromatin dynamics during DSB repair, Biochim. Biophys. Acta, 1773, 1534–1545.

    Article  PubMed  CAS  Google Scholar 

  62. Soutoglou, E., Dorn, J. F., Sengupta, K., Jasin, M., Nussenzweig, A., Ried, T., Danuser, G., and Misteli, T. (2007) Positional stability of single double-strand breaks in mammalian cells, Nat. Cell. Biol., 9, 675–682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jakob, B., Splinter, J., Durante, M., and Taucher-Scholz, G. (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion, Proc. Natl. Acad. Sci. USA, 106, 3172–3177.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu, J., Vidi, P.-A., Lelievre, S. A., and Irudayaraj, J. M. K. (2015) Nanoscale histone localization in live cells reveals reduced chromatin mobility in response to DNA damage, J. Cell Sci., 128, 599–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Iarovaia, O. V., Rubtsov, M., Ioudinkova, E., Tsfasman, T., Razin, S. V., and Vassetzky, Y. S. (2014) Dynamics of dou-ble strand breaks and chromosomal translocations, Mol. Cancer, 13, 249.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Glukhov, S. I., Rubtsov, M. A., Alexeyevsky, D. A., Alexeevski, A. V., Razin, S. V., and Iarovaia, O. V. (2013) The broken MLL gene is frequently located outside the inherent chromosome territory in human lymphoid cells treated with DNA topoisomerase II poison etoposide, PLoS One, 8, e75871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chiolo, I., Minoda, A., Colmenares, S. U., Polyzos, A., Costes, S. V., and Karpen, G. H. (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair, Cell, 144, 732–744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ryu, T., Spatola, B., Delabaere, L., Bowlin, K., Hopp, H., Kunitake, R., Karpen, G. H., and Chiolo, I. (2015) Heterochromatic breaks move to the nuclear periphery to continue recombinational repair, Nat. Cell Biol., 17, 1401–1411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Roukos, V., Voss, T. C., Schmidt, C. K., Lee, S., Wangsa, D., and Misteli, T. (2013) Spatial dynamics of chromosome translocations in living cells, Science, 341, 660–664.

    Article  PubMed  CAS  Google Scholar 

  70. Nikiforova, M. N., Stringer, J. R., Blough, R., Medvedovic, M., Fagin, J. A., and Nikiforov, Y. E. (2000) Proximity of chromosomal loci that participate in radia-tion-induced rearrangements in human cells, Science, 290, 138–141.

    Article  PubMed  CAS  Google Scholar 

  71. Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A., and Misteli, T. (2003) Spatial proximity of translocation-prone gene loci in human lymphomas, Nat. Genet., 34, 287–291.

    Article  PubMed  CAS  Google Scholar 

  72. Parada, L. A., McQueen, P. G., and Misteli, T. (2004) Tissue-specific spatial organization of genomes, Genome Biol., 5, R44.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Germini, D., Tsfasman, T., Klibi, M., El-Amine, R., Pichugin, A., Iarovaia, O. V., Bilhou-Nabera, C., Subra, F., Bou Saada, Y., Sukhanova, A., Boutboul, D., Raphael, M., Wiels, J., Razin, S. V., Bury-Mone, S., Oksenhendler, E., Lipinski, M., and Vassetzky, Y. S. (2017) HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells, Leukemia, 31, 2515–2522.

    Article  PubMed  CAS  Google Scholar 

  74. Pombo, A., and Dillon, N. (2015) Three-dimensional genome architecture: players and mechanisms, Nat. Rev. Mol. Cell Biol., 16, 245–257.

    Article  PubMed  CAS  Google Scholar 

  75. Dekker, J., Marti-Renom, M. A., and Mirny, L. A. (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data, Nat. Rev. Genet., 14, 390–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bickmore, W. A., and Van Steensel, B. (2013) Genome architecture: domain organization of interphase chromo-somes, Cell, 152, 1270–1284.

    Article  PubMed  CAS  Google Scholar 

  77. Cremer, T., and Cremer, C. (2001) Chromosome territo-ries, nuclear architecture and gene regulation in mam-malian cells, Nat. Rev. Genet., 2, 292–301.

    Article  PubMed  CAS  Google Scholar 

  78. Boyle, S., Gilchrist, S., Bridger, J. M., Mahy, N. L., Ellis, J. A., and Bickmore, W. A. (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells, Hum. Mol. Genet., 10, 211–219.

    Article  PubMed  CAS  Google Scholar 

  79. Croft, J. A., Bridger, J. M., Boyle, S., Perry, P., Teague, P., and Bickmore, W. A. (1999) Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell. Biol., 145, 1119–1131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mehta, I. S., Kulashreshtha, M., Chakraborty, S., Kolthur-Seetharam, U., and Rao, B. J. (2013) Chromosome territo-ries reposition during DNA damage-repair response, Genome Biol., 14, R135.

    Google Scholar 

  81. Kulashreshtha, M., Mehta, I. S., Kumar, P., and Rao, B. J. (2016) Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by γ-H2AX signaling, Nucleic Acids Res., 44, 8272–8291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Mehta, I. S., Amira, M., Harvey, A. J., and Bridger, J. M. (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts, Genome Biol., 11, R5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bridger, J. M., Boyle, S., Kill, I. R., and Bickmore, W. A. (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts, Curr. Biol., 10, 149–152.

    Article  PubMed  CAS  Google Scholar 

  84. Essers, J., Van Cappellen, W. A., Theil, A. F., Van Drunen, E., Jaspers, N. G. J., Hoeijmakers, J. H. J., Wyman, C., Vermeulen, W., and Kanaar, R. (2004) Dynamics of relative chromosome position during the cell cycle, Mol. Biol. Cell, 16, 769–775.

    Article  PubMed  Google Scholar 

  85. Walter, J., Schermelleh, L., Cremer, M., Tashiro, S., and Cremer, T. (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably main-tained during subsequent interphase stages, J. Cell Biol., 160, 685–697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Thomson, I., Gilchrist, S., Bickmore, W. A., and Chubb, J. R. (2004) The radial positioning of chromatin is not inher-ited through mitosis but is established de novo in early G1, Curr. Biol., 14, 166–172.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang, Q., Kota, K. P., Alam, S. G., Nickerson, J. A., Dickinson, R. B., and Lele, T. P. (2016) Coordinated dynamics of RNA splicing speckles in the nucleus, J. Cell. Physiol., 231, 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  88. Arifulin, E. A., Sorokin, D. V., Musinova, Y. R., Zhironkina, O. A., Golyshev, S. A., Abramchuk, S. S., Vassetzky, Y. S., and Sheval, E. V. (2017) Heterochromatin restricts the mobility of nuclear bodies, Chromosoma, (in press).

    Google Scholar 

  89. Dundr, M., Ospina, J. K., Sung, M.-H., John, S., Upender, M., Ried, T., Hager, G. L., and Matera, A. G. (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo, J. Cell. Biol., 179, 1095–1103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Chang, L., Godinez, W. J., Kim, I.-H., Tektonidis, M., De Lanerolle, P., Eils, R., Rohr, K., and Knipe, D. M. (2011) Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late mRNA, Proc. Natl. Acad. Sci. USA, 108, 136–144.

    Article  Google Scholar 

  91. Khanna, N., Hu, Y., and Belmont, A. S. (2014) HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation, Curr. Biol., 24, 1138–1144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ondrej, V., Kozubek, S., Lukasova, E., Falk, M., Matula, P., Matula, P., and Kozubek, M. (2006) Directional motion of foreign plasmid DNA to nuclear HP1 foci, Chromosome Res., 14, 505–514.

    Article  PubMed  CAS  Google Scholar 

  93. Arbona, J.-M., Herbert, S., Fabre, E., and Zimmer, C. (2017) Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations, Genome Biol., 18, 81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Matheson, T. D., and Kaufman, P. D. (2016) Grabbing the genome by the NADs, Chromosoma, 125, 361–371.

    Article  PubMed  CAS  Google Scholar 

  95. Gonzalez-Sandoval, A., and Gasser, S. M. (2016) On TADs and LADs: spatial control over gene expression, Trends Genet., 32, 485–495.

    Article  PubMed  CAS  Google Scholar 

  96. Yanez-Cuna, J. O., and Van Steensel, B. (2017) Genome–nuclear lamina interactions: from cell popula-tions to single cells, Curr. Opin. Genet. Dev., 43, 67–72.

    Article  PubMed  CAS  Google Scholar 

  97. Van Steensel, B., and Belmont, A. S. (2017) Lamina-asso-ciated domains: links with chromosome architecture, hete-rochromatin, and gene repression, Cell, 169, 780–791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Padeken, J., and Heun, P. (2014) Nucleolus and nuclear periphery: velcro for heterochromatin, Curr. Opin. Cell Biol., 28, 54–60.

    Article  PubMed  CAS  Google Scholar 

  99. Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., De Vries, S. S., Janssen, H., Amendola, M., Nolen, L. D., Bickmore, W. A., and Van Steensel, B. (2013) Single-cell dynamics of genome–nuclear lamina interactions, Cell, 153, 178–192.

    Article  PubMed  CAS  Google Scholar 

  100. van Koningsbruggen, S., Gierlinski, M., Schofield, P., Martin, D., Barton, G. J., Ariyurek, Y., Den Dunnen, J. T., and Lamond, A. I. (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli, Mol. Biol. Cell, 21, 3735–3748.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ogushi, S., Yamagata, K., Obuse, C., Furuta, K., Wakayama, T., Matzuk, M. M., and Saitou, M. (2017) Reconstitution of the oocyte nucleolus in mice through a single nucleolar protein, NPM2, J. Cell Sci., 130, 2416–2429.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Solovei, I., Kreysing, M., Lanctot, C., Kosem, S., Peichl, L., Cremer, T., Guck, J., and Joffe, B. (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution, Cell, 137, 356–368.

    Article  PubMed  CAS  Google Scholar 

  103. Eberhart, A., Feodorova, Y., Song, C., Wanner, G., Kiseleva, E., Furukawa, T., Kimura, H., Schotta, G., Leonhardt, H., Joffe, B., and Solovei, I. (2013) Epigenetics of eu-and heterochromatin in inverted and conventional nuclei from mouse retina, Chromosome Res., 21, 535–554.

    Article  PubMed  CAS  Google Scholar 

  104. Thanisch, K., Song, C., Engelkamp, D., Koch, J., Wang, A., Hallberg, E., Foisner, R., Leonhardt, H., Stewart, C. L., Joffe, B., and Solovei, I. (2017) Nuclear envelope localization of LEMD2 is developmentally dynamic and lamin A/C dependent yet insufficient for heterochromatin tethering, Differentiation, 94, 58–70.

    Article  PubMed  CAS  Google Scholar 

  105. Musinova, Y. R., Lisitsyna, O. M., Sorokin, D. V., Arifulin, E. A., Smirnova, T. A., Zinovkin, R. A., Potashnikova, D. M., Vassetzky, Y. S., and Sheval, E. V. (2016) RNA-dependent disassembly of nuclear bodies, J. Cell Sci., 129, 4509–4520.

    Article  PubMed  CAS  Google Scholar 

  106. Cremer, T., Kreth, G., Koester, H., Fink, R. H., Heintzmann, R., Cremer, M., Solovei, I., Zink, D., and Cremer, C. (2000) Chromosome territories, interchro-matin domain compartment, and nuclear matrix: an inte-grated view of the functional nuclear architecture, Crit. Rev. Eukaryot. Gene Expr., 10, 179–212.

    Article  PubMed  CAS  Google Scholar 

  107. Albiez, H., Cremer, M., Tiberi, C., Vecchio, L., Schermelleh, L., Dittrich, S., Kupper, K., Joffe, B., Thormeyer, T., Von Hase, J., Yang, S., Rohr, K., Leonhardt, H., Solovei, I., Cremer, C., Fakan, S., and Cremer, T. (2006) Chromatin domains and the interchro-matin compartment form structurally defined and func-tionally interacting nuclear networks, Chromosome Res., 14, 707–733.

    Article  PubMed  CAS  Google Scholar 

  108. Rouquette, J., Genoud, C., Vazquez-Nin, G. H., Kraus, B., Cremer, T., and Fakan, S. (2009) Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: a novel electron-microscopic approach to reconstructing nuclear architecture, Chromosome Res., 17, 801–810.

    Article  PubMed  CAS  Google Scholar 

  109. Arai, R., Sugawara, T., Sato, Y., Minakuchi, Y., Toyoda, A., Nabeshima, K., Kimura, H., and Kimura, A. (2017) Reduction in chromosome mobility accompanies nuclear organization during early embryogenesis in Caenorhabditis elegans, Sci. Rep., 7, 3631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Vinogradov, A. E. (2005) Genome size and chromatin condensation in vertebrates, Chromosoma, 113, 362–369.

    Article  PubMed  Google Scholar 

  111. Sparvoli, E., Gay, H., and Kaufmann, B. P. (1965) Number and pattern of association of chromonemata in the chro-mosomes of Tradescantia, Chromosoma, 16, 415–435.

    Article  PubMed  CAS  Google Scholar 

  112. Hao, S., Jiao, M., Zhao, J., Xing, M., and Huang, B. (1994) Reorganization and condensation of chromatin in mitotic prophase nuclei of Allium cepa, Chromosoma, 103, 432–440.

    Article  PubMed  CAS  Google Scholar 

  113. Kuznetsova, M. A., Chaban, I. A., and Sheval, E. V. (2017) Visualization of chromosome condensation in plants with large chromosomes, BMC Plant Biol., 17, 153.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Macadangdang, B. R., Oberai, A., Spektor, T., Campos, O. A., Sheng, F., Carey, M. F., Vogelauer, M., and Kurdistani, S. K. (2014) Evolution of histone 2A for chro-matin compaction in eukaryotes, eLife, 3, e02792.

    Article  PubMed Central  CAS  Google Scholar 

  115. Bronshtein, I., Kepten, E., Kanter, I., Berezin, S., Lindner, M., Redwood, A. B., Mai, S., Gonzalo, S., Foisner, R., Shav-Tal, Y., and Garini, Y. (2015) Loss of lamin A function increases chromatin dynamics in the nuclear interior, Nat. Commun., 6, 8044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bronshtein, I., Kanter, I., Kepten, E., Lindner, M., Berezin, S., Shav-Tal, Y., and Garini, Y. (2016) Exploring chromatin organization mechanisms through its dynamic properties, Nucleus, 7, 27–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Stixova, L., Matula, P., Kozubek, S., Gombitova, A., Cmarko, D., Raska, I., and Bartova, E. (2012) Trajectories and nuclear arrangement of PML bodies are influenced by A-type lamin deficiency, Biol. Cell., 104, 418–432.

    Article  PubMed  CAS  Google Scholar 

  118. Orlova, D. Y., Stixova, L., Kozubek, S., Gierman, H. J., Sustackova, G., Chernyshev, A. V., Medvedev, R. N., Legartova, S., Versteeg, R., Matula, P., Stoklasa, R., and Bartova, E. (2012) Arrangement of nuclear structures is not transmitted through mitosis but is identical in sister cells, J. Cell. Biochem., 113, 3313–3329.

    Article  PubMed  CAS  Google Scholar 

  119. Strickfaden, H., Zunhammer, A., van Koningsbruggen, S., Kohler, D., and Cremer, T. (2010) 4D chromatin dynam-ics in cycling cells: Theodor Boveri’s hypotheses revisited, Nucleus, 1, 284–297.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Arifulin.

Additional information

Original Russian Text © E. A. Arifulin, Y. R. Musinova, Y. S. Vassetzky, E. V. Sheval, 2018, published in Biokhimiya, 2018, Vol. 83, No. 6, pp. 870-882.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arifulin, E.A., Musinova, Y.R., Vassetzky, Y.S. et al. Mobility of Nuclear Components and Genome Functioning. Biochemistry Moscow 83, 690–700 (2018). https://doi.org/10.1134/S0006297918060068

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918060068

Keywords

Navigation