Skip to main content
Log in

Organization of functional processes in the cell nucleus: The order emerging out of the disorder

  • Molecular Biology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

In this review, the current views on the spatial organization of the eukaryotic genome, as well as the functional compartmentalization of the cell nucleus, are discussed. The evidence that the genome packed in the 3D space of the cell nucleus is the structural basis for the nucleus compartmentalization are represented. Various mechanisms of mutual positioning of the remote genomic elements and mechanisms of the formation of functional compartments within the cell nucleus are analyzed. A possible role of factors emerging as a result of molecular crowding is also discussed. In the last section, the model, which suggests the important role of stochastic processes in the formation of the so-called genome functional architecture and the assembly of functional compartments in the cell nucleus, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh Sandhu, K., Li, G., Sung, W.K., and Ruan, Y., Chromatin interaction networks and higher order architectures of eukaryotic genomes, J. Cell. Biochem., 2011, vol. 112, no. 9, pp. 2218–2221.

    Article  CAS  PubMed  Google Scholar 

  2. Ong, C.T. and Corces, V.G., CTCF: an architectural protein bridging genome topology and function, Nat. Rev. Genet., 2014, vol. 15, no. 4, pp. 234–246.

    Article  CAS  PubMed  Google Scholar 

  3. Cavalli, G. and Misteli, T., Functional implications of genome topology, Nat. Struct. Mol. Biol., 2013, vol. 20, no. 3, pp. 290–299.

    Article  CAS  PubMed  Google Scholar 

  4. Cook, P.R., The organization of replication and transcription, Science, 1999, vol. 284, no. 4321, pp. 1790–1795.

    Article  CAS  PubMed  Google Scholar 

  5. Papantonis, A. and Cook, P.R., Fixing the model for transcription: the DNA moves, not the polymerase, Transcr., 2011, vol. 2, no. 1, pp. 41–44.

    Google Scholar 

  6. Nakamura, H., Morita, T., and Sato, C., Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus, Exp. Cell Res., 1986, vol. 165, no. 2, pp. 291–297.

    Article  CAS  PubMed  Google Scholar 

  7. Ma, H., Samarabandu, J., Devdhar, R.S., Acharya, R., Cheng, P.C., Meng, C., and Berezney, R., Spatial and temporal dynamics of DNA replication sites in mammalian cells, J. Cell Biol., 1998, vol. 143, no. 6, pp. 1415–1425.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hassan, A.B. and Cook, P.R., Visualization of replication sites in unfixed human cells, J. Cell Sci., 1993, vol. 105, no. 2, pp. 541–550.

    PubMed  Google Scholar 

  9. Hozak, P., Cook, P.R., Schofer, C., Mosgoller, W., and Wachtler, F., Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells, J. Cell Sci., 1994, vol. 107, no. 2, pp. 639–648.

    CAS  PubMed  Google Scholar 

  10. Bregman, D.B., Du, L., van der Zee, S., and Warren, S.L., Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains, J. Cell Biol., 1995, vol. 129, no. 2, pp. 287–298.

    Article  CAS  PubMed  Google Scholar 

  11. Iborra, F.J., Pombo, A., Jackson, D.A., and Cook, P.R., Active RNA polymerases are localized within discrete transcription “factories” in human nuclei, J. Cell Sci., 1996, vol. 109, no. 6, pp. 1427–1436.

    CAS  PubMed  Google Scholar 

  12. Kolovos, P., Knoch, T.A., Grosveld, F.G., Cook, P.R., and Papantonis, A., Enhancers and silencers: an integrated and simple model for their function, Epigenetics Chromatin, 2012, vol. 5, no. 1, p. 1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Papantonis, A. and Cook, P.R., Transcription factories: genome organization and gene regulation, Chem. Rev., 2013, vol. 113, no. 11, pp. 8683–8705.

    Article  CAS  PubMed  Google Scholar 

  14. Sutherland, H. and Bickmore, W.A., Transcription factories: gene expression in unions?, Nat. Rev. Genet., 2009, vol. 10, no. 7, pp. 457–466.

    Article  CAS  PubMed  Google Scholar 

  15. Schoenfelder, S., Clay, I., and Fraser, P., The transcriptional interactome: gene expression in 3D, Curr. Opin. Genet. Dev., 2010, vol. 20, no. 2, pp. 127–133.

    Article  CAS  PubMed  Google Scholar 

  16. Schoenfelder, S., Sexton, T., Chakalova, L., et al., Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells, Nat. Genet., 2010, vol. 42, no. 1, pp. 53–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Nizami, Z., Deryusheva, S., and Gall, J.G., The Cajal body and histone locus body, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 7, p. a000653.

    Google Scholar 

  18. Lallemand-Breitenbac, V. and de The, H., PML nuclear bodies, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 5, p. a000661.

    Google Scholar 

  19. Spector, D.L. and Lamond, A.I., Nuclear speckles, Cold Spring Harb. Perspect. Biol., 2011, vol. 3, p. a000646.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Fox, A.H. and Lamond, A.I., Paraspeckles, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 7, p. a000687.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Gerasimova, T.I., Byrd, K., and Corces, V.G., A chromatin insulator determines the nuclear localization of DNA, Mol. Cell, 2000, vol. 6, pp. 2000–6.

    Article  Google Scholar 

  22. Pirrotta, V. and Li, H.B., A view of nuclear Polycomb bodies, Curr. Opin. Genet. Dev., 2012, vol. 22, no. 2, pp. 101–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ching, R.W., Dellaire, G., Eskiw, Ch., and BazettJones, D.P., Pml bodies: a meting place for genomic loci?, J. Cell Sci., 2005, vol. 118, no. 5, pp. 847–854.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J., Shiels, C., Sasieni, P., Wu, P.J., Islam, S.A., Freemont, P.S., and Sheer, D., Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions, J. Cell Biol., 2004, vol. 164, no. 4, pp. 515–526.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Brown, J.M., Green, J., Neves, R.P., Wallace, H.A., Smith, A.J., Hughes, J., Gray, N., Taylor, S., Wood, W.G., Higgs, D.R., Iborra, F.J., and Buckle, V.J., Association between active genes occurs at nuclear speckles and is modulated by chromatin environment, J. Cell Biol., 2008, vol. 182, no. 6, pp. 1083–1097.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Szczerbal, I. and Bridger, J.M., Association of adipogenic genes with SC-35 domains during porcine adipogenesis, Chromosome Res., 2010, vol. 18, no. 8, pp. 887–895.

    Article  CAS  PubMed  Google Scholar 

  27. Shopland, L.S., Johnson, C.V., Byron, M., McNeil, J., and Lawrence, J.B., Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods, J. Cell Biol., 2003, vol. 162, no. 6, pp. 981–990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. van Driel, R., Fransz, P.F., and Verschure, P.J., The eukaryotic genome: a system regulated at different hierarchical levels, J. Cell Sci., 2003, vol. 116, no. 20, pp. 4067–4075.

    Article  PubMed  Google Scholar 

  29. Schneider, R., Grosschedl R. dynamics and interplay of nuclear architecture, genome organization, and gene expression, Genes Dev., 2007, vol. 21, no. 23, pp. 3027–3043.

    Article  CAS  PubMed  Google Scholar 

  30. Schul, W., de Jong, L., and van Driel, R., Nuclear neighbours: the spatial and functional organization of genes and nuclear domains, J. Cell. Biochem., 1998, vol. 70, no. 2, pp. 159–171.

    Article  CAS  PubMed  Google Scholar 

  31. Osborne, C.S., Chakalova, L., Brown, K.E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J.A., Lopes, S., Reik, W., and Fraser, P., Active genes dynamically colocalize to shared sites of ongoing transcription, Nat. Genet., 2004, vol. 36, no. 10, pp. 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  32. Brown, J.M., Leach, J., Reittie, J.E., Atzberger, A., Lee-Prudhoe, J., Wood, W.G., Higgs, D.R., Iborra, F.J., and Buckle, V.J., Coregulated human globin genes are frequently in spatial proximity when active, J. Cell Biol., 2006, vol. 172, no. 2, pp. 177–187.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dekker, J., Rippe, K., Dekker, M., and Kleckner, N., Capturing chromosome conformation, Science, 2002, vol. 295, no. 5558, pp. 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  34. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and de Laat, W., Looping and interaction between hypersensitive sites in the active beta-globin locus, Mol. Cell, 2002, vol. 10, no. 6, pp. 1453–1465.

    Article  CAS  PubMed  Google Scholar 

  35. de Laat, W. and Grosveld, F., Spatial organization of gene expression: the active chromatin hub, Chromosome Res., 2003, vol. 11, pp. 2003–11.

    Google Scholar 

  36. de Laat, W., Klous, P., Kooren, J., Noordermeer, D., Palstra, R.J., Simonis, M., Splinter, E., and Grosveld, F., Three-dimensional organization of gene expression in erythroid cells, Curr. Top. Dev. Biol., 2008, vol. 82, pp. 2008–82.

    Google Scholar 

  37. Ptashne, M., How eukaryotic transcriptional activators work, Nature, 1988, vol. 335, no. 6192, pp. 683–689.

    Article  CAS  PubMed  Google Scholar 

  38. Ptashne, M. and Gann, A., Transcriptional activation by recruitment, Nature, 1997, vol. 386, no. 6625, pp. 569–577.

    Article  CAS  PubMed  Google Scholar 

  39. Plank, J.L. and Dean, A., Enhancer function: mechanistic and genome-wide insights come together, Mol. Cell, 2014, vol. 55, no. 1, pp. 5–14.

    Article  CAS  PubMed  Google Scholar 

  40. Belin, B.J. and Mullins, R.D., What we talk about when we talk about nuclear actin, Nucleus, 2013, vol. 4, no. 4, pp. 291–297.

    Article  PubMed Central  PubMed  Google Scholar 

  41. de Lanerolle, P., Nuclear actin and myosins at a glance, J. Cell Sci., 2012, vol. 125, no. 21, pp. 4945–4949.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Grosse, R. and Vartiainen, M.K., To be or not to be assembled: progressing into nuclear actin filaments, Nat. Rev. Mol. Cell. Biol., 2013, vol. 14, no. 11, pp. 693–697.

    Article  CAS  PubMed  Google Scholar 

  43. Treisman, R., Shedding light on nuclear actin dynamics and function, Trends Biochem. Sci., 2013, vol. 38, no. 8, pp. 376–377.

    Article  CAS  PubMed  Google Scholar 

  44. Kowalczyk, M.S., Hughes, J.R., Garrick, D., et al., iIntragenic enhancers act as alternative promoters, Mol. Cell, 2012, vol. 45, no. 4, pp. 447–458.

    Article  CAS  PubMed  Google Scholar 

  45. Marques, A.C., Hughes, J., Graham, B., Kowalczyk, M.S., Higgs, D.R., and Ponting, C.P., Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs, Genome Biol., 2013, vol. 14, no. 11, p. R131.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Zirkel, A. and Papantonis, A., Transcription as a force partitioning the eukaryotic genome, Biol. Chem., 2014, vol. 395, no. 11, pp. 1301–1305.

    Article  CAS  PubMed  Google Scholar 

  47. Razin, S.V., Gavrilov, A.A., Ioudinkova, E.S., and Iarovaia, O.V., Communication of genome regulatory elements in f folded chromosome, FEBS Lett., 2013, vol. 587, no. 13, pp. 1840–1847.

    Article  CAS  PubMed  Google Scholar 

  48. Marshall, W.F., Fung, J.C., and Sedat, J.W., Deconstructing the nucleus: global architecture from local interactions, Curr. Opin. Genet. Dev., 1997, vol. 7, no. 2, pp. 259–263.

    Article  CAS  PubMed  Google Scholar 

  49. Marshall, W.F., Straight, A., Marko, J.F., Swedlow, J., Dernburg, A., Belmont, A., Murray, A.W., Agard, D.A., and Sedat, J.W., Interphase chromosomes undergo constrained diffusional motion in living cells, Curr. Biol., 1997, vol. 7, no. 12, pp. 930–939.

    Article  CAS  PubMed  Google Scholar 

  50. Pliss, A., Malyavantham, K.S., Bhattacharya, S., and Berezney, R., Chromatin dynamics in living cells: identification of oscillatory motion, J. Cell Physiol., 2013, vol. 228, no. 3, pp. 609–616.

    Article  CAS  PubMed  Google Scholar 

  51. Misteli, T., Protein dynamics: implications for nuclear architecture and gene expression, Science, 2001, vol. 291, no. 5505, pp. 843–847.

    Article  CAS  PubMed  Google Scholar 

  52. Ioudinkova, E.S., Gavrilov, A.A., and Razin, S.V., Folded genome as a platform for the functional compartmentalization of the eukaryotic cell nucleus, Biopolym. Cell, 2014, vol. 30, no. 2, pp. 83–89.

    Article  CAS  Google Scholar 

  53. Phillips-Cremins, J.E. and Corces, V.G., Chromatin insulators: linking genome organization to cellular function, Mol. Cell, 2013, vol. 50, no. 4, pp. 461–474.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Nolis, I.K., McKay, D.J., Mantouvalou, E., Lomvardas, S., Merika, M., and Thanos, D., Transcription factors mediate long-range enhancer-promoter interactions, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 48, pp. 20222–20227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hancock, R., InteRNAl organization of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model, Biol. Cell., 2004, vol. 96, no. 8, pp. 595–601.

    Article  CAS  PubMed  Google Scholar 

  56. Marenduzzo, D., Micheletti, C., and Cook, P.R., Entropy-driven genome organization, Biophys. J., 2006, vol. 90, no. 10, pp. 3712–3721.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Marenduzzo, D., Finan, K., and Cook, P.R., The depletion attraction: an underappreciated force driving cellular organization, J. Cell Biol., 2006, vol. 175, no. 5, pp. 681–686.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mitchell, J.A. and Fraser, P., Transcription factories are nuclear subcompartments that remain in the absence of transcription, Genes Dev., 2008, vol. 22, no. 1, pp. 20–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Razin, S.V., Gavrilov, A.A., Pichugin, A., Lipinski, M., Iarovaia, O.V., and Vassetzk, Y.S., Transcription factories in the context of the nuclear and genome organization, Nucleic Acids Res., 2011, vol. 39, no. 21, pp. 9085–9092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Razin, S.V., Gavrilov, A.A., and Yarovaya, O.V., Transcription factories and spatial organization of eukaryotic genomes, Biochemistry (Moscow), 2010, vol. 75, no. 11, pp. 1307–1315.

    Article  CAS  Google Scholar 

  61. Kim, T.K., Hemberg, M., Gray, J.M., et al., Widespread transcription at neuronal activity-regulated enhancers, Nature, 2010, vol. 465, no. 7295, pp. 182–187.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. De Santa, F., Barozzi, I., Mietton, F., Ghisletti, S., Polletti, S., Tusi, B.K., Muller, H., Ragoussis, J., Wei, C.L., and Natoli, G., A large fraction of extragenic RNA pol ii transcription sites overlap enhancers, PLoS Biol., 2010, vol. 8, no. 5, p. e1000384.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Natoli, G. and Andrau, J.C., Noncoding transcription at enhancers: general principles and functional models, Ann. Rev. Genet., 2012, vol. 46, pp. 2012–46.

    Article  Google Scholar 

  64. Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E.D., Tanay, A., and Fraser, P., Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 2013, vol. 502, no. 7469, pp. 59–64.

    Article  CAS  PubMed  Google Scholar 

  65. Gavrilov, A.A., Chetverina, H.V., Chermnykh, E.S., Razin, S.V., and Chetverin, A.B., Quantitative analysis of genomic element interactions by molecular colony technique, Nucleic Acids Res., 2014, vol. 42, no. 5, p. e36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Gavrilov, A.A., Golov, A.K., and Razin, S.V., Actual ligation frequencies in the chromosome conformation capture procedure, PLoS One, 2013, vol. 8, no. 3, p. e60403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Berezney, R., Mortillaro, M.J., Ma, H., Wei, X., and Samarabandu, J., The nuclear matrix: a structural milieu for genomic function, Int. Rev. Cytol., 1995, vol. 162, pp. 1995–162, 12a, 12b, 12c, 12d, 13–65.

    Google Scholar 

  68. Razin, S.V., Borunova, V.V., Iarovaia, O.V., and Vassetzky, Y.S., Nuclear matrix and structural and functional compartmentalization of the eukaryotic cell nucleus, Biochemistry (Moscow), 2014, vol. 79, no. 7, pp. 608–618.

    Article  CAS  Google Scholar 

  69. Cremer, T. and Cremer, C., Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet., 2001, vol. 2, no. 4, pp. 292–301.

    Article  CAS  PubMed  Google Scholar 

  70. Rosa, A. and Everaers, R., Structure and dynamics of interphase chromosomes, PLoS Comput. Biol., 2008, vol. 4, no. 8, p. e1000153.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Tark-Dame, M., van Driel, R., and Heermann, D.W., Chromatin folding—from biology to polymer models and back, J. Cell Sci., 2011, vol. 124, no. 6, pp. 839–845.

    Article  CAS  PubMed  Google Scholar 

  72. Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., Muller, S., Eils, R., Cremer, C., Speicher, M.R., and Cremer, T., Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes, PLoS Biol., 2005, vol. 3, no. 5, p. e157.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Croft, J.A., Bridger, J.M., Boyle, S., Perry, P., Teague, P., and Bickmore, W.A., Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol., 1999, vol. 145, no. 6, pp. 1119–1131.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M.B., Talhout, W., Eussen, B.H., de Klein, A., Wessels, L., de Laat, W., and van Steensel, B., Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, 2008, vol. 453, no. 7197, pp. 948–951.

    Article  CAS  PubMed  Google Scholar 

  75. van Koningsbruggen, S., Gierlinski, M., Schofield, P., Martin, D., Barton, G.J., Ariyurek, Y., Dunnen, J.T., and Lamond, A.I., High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli, Mol. Biol. Cell, 2010, vol. 21, no. 21, pp. 3735–3748.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Cremer, T. and Cremer, M., Chromosome territories, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 3, p. a003889.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Dai, J., Han, Y., Xu, B., Li, Y., Liu, J., Zhao, Y., and Zhang, F., Ultrastructural changes of nucleoli in common wheat induced by actinomycin D, Biotech. Histochem., 2005, vol. 80, nos. 5–6, pp. 223–225.

    Article  CAS  PubMed  Google Scholar 

  78. Turner, A.J., Knox, A.A., and Watkins, N.J., Nucleolar disruption leads to the spatial separation of key 18S rRNA processing factors, RNA Biol., 2012, vol. 9, no. 2, pp. 175–186.

    Article  CAS  PubMed  Google Scholar 

  79. Hancock, R., The crowded nucleus, Int. Rev. Cell. Mol. Biol., 2014, vol. 307.

  80. Mao, Y.S., Sunwoo, H., Zhang, B., and Spector, D.L., Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs, Nat. Cell. Biol., 2011, vol. 13, no. 1, pp. 95–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Razin.

Additional information

Original Russian Text © S.V. Razin, A.A. Gavrilov, 2015, published in Vestnik Moskovskogo Universiteta. Biologiya, 2015, No. 3, pp. 13–20.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razin, S.V., Gavrilov, A.A. Organization of functional processes in the cell nucleus: The order emerging out of the disorder. Moscow Univ. Biol.Sci. Bull. 70, 115–121 (2015). https://doi.org/10.3103/S0096392515030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392515030104

Keywords

Navigation