Skip to main content
Log in

Directional motion of foreign plasmid DNA to nuclear HP1 foci

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Movement of labelled plasmid DNA relative to heterochromatin foci in nuclei, visualized with HP1-GFP, was studied using live-cell imaging and object tracking. In addition to Brownian motion of plasmid DNA we found a pronounced, non-random movement of plasmid DNA towards the nearest HP1 focus, while time-lapse microscopy showed that HP1 foci are relatively immobile and positionally stable. The movement of plasmid DNA was much faster than that of the HP1 foci. Contact of transgene DNA with an HP1 focus usually resulted in cessation of the directional motion. Moreover, the motion of plasmid DNA inside the heterochromatin compartment was more restricted (limited to 0.25 μm) than when the plasmid DNA was outside heterochromatin (R = 0.7 μm). Three days after transfection most of the foreign labelled DNA colocalized with centromeric heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard L, Laible G, Selenko P et al. (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18: 1923–1938.

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Bártová E, Kozubek S, Jirsová P et al. (2002) Nuclear structure and gene activity in human differentiated cells. J Struct Biol 139: 76–89.

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2001) An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene 20: 3007–3013.

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91: 845–854.

    Article  PubMed  CAS  Google Scholar 

  • Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299: 721–725.

    Article  PubMed  CAS  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12: 439–445.

    Article  PubMed  CAS  Google Scholar 

  • Clubb BH, Locke M (1998) Peripheral nuclear matrix actin forms perinuclear shells. J Cell Biochem 70: 240–251.

    Article  PubMed  CAS  Google Scholar 

  • Cryderman DE, Morfia EJ, Biessmann H, Elgin SC, Wallrath LL (1999) Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J 18: 3724–3735.

    Article  PubMed  CAS  Google Scholar 

  • Dillon N, Festenstein R (2002) Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 18: 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Dobie KW, Lee M, Fantes JA et al. (1996) Variegated transgene expression in mouse mammary gland is determinated by the transgene integration locus. Proc Natl Acad Sci USA 93: 6659–6664.

    Article  PubMed  CAS  Google Scholar 

  • Festenstein R, Pagakis SN, Hiragami K et al. (2003) Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 269: 1429–1431.

    Google Scholar 

  • Francastel C, Walter MC, Groundine M, Martin DIK (1999) A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell 99: 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Francastel C, Schubeler D, Martin DI, Groudine M (2000) Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol 1: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Friend DS, Papahadjopoulos D, Debs RJ (1996) Endocytosis and intracellularprocessing accompaning transfection mediated by cationic liposomes. Biochim Biophys Acta 1278: 41–50.

    Article  PubMed  Google Scholar 

  • Gilbert N, Allan J (2001) Distinctive higher-order chromatin structure at mammalian centromeres. Proc Natl Acad Sci USA 98: 11949–11954.

    Article  PubMed  CAS  Google Scholar 

  • Görisch SM, Wachsmuth M, Ittrich C, Bacher CP, Rippe K, Lichter P (2004) Nuclear body movement is determined by chromatin accessibility and dynamics. Proc Natl Acad Sci USA 101: 13221–13226.

    Article  PubMed  Google Scholar 

  • Hayakawa T, Haraguchi T, Masumoto H, Horaoka Y (2003) Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for thein centromeric localization dutiny interphase and metaphase. J Cell Sci 116: 3327–3338.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann W, Stojiljkovic L, Fuchsova B et al. (2004) Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol 6: 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  • Howe M, Dimitri P, Berloco M, Wakimoto BT (1995) Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics 140: 1033–1045.

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Johnson L, Jurcisek JA (1999) A method to monitor DNA transfer during transfection. AAPS Pharmsci 1(3): 1–7.

    Article  CAS  Google Scholar 

  • Kashihara N, Maeshima Y, Makino H (1998) Antisense oligonucleotides. Exp Nephrol 6: 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa JI (2000) Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5: 289–307.

    Article  PubMed  CAS  Google Scholar 

  • Kozubek M, Matula Pe, Matula Pa, Kozubek S (2004) Automated acquisition and processing of multidimensional image data in confocal in vivo microscopy. Microsci Res Tech 64: 164–175.

    Article  Google Scholar 

  • Lukacs GL, Haggie P, Seksek O, Lecherdeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275: 1625–1629.

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Siegel AJ, Berezney R (1999) Association of chromosome territories with nuclear matrix: disruption of human chromosome territories correlates with the release of subset of nuclear matrix proteins. J Cell Biol 146: 531–541.

    Article  PubMed  CAS  Google Scholar 

  • Mearini G, Nielsen PE, Fackelmayer FO (2004) Localization and dynamics of small circular DNA in live mammalian nuclei. Nucleic Acids Res 32: 2642–2651.

    Article  PubMed  CAS  Google Scholar 

  • Mutskov V, Felsenfeld G (2004) Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J 23: 138–149.

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (2000) Half a century of ‘the nuclear matrix’. Mol Biol Cell 11: 799–805.

    PubMed  CAS  Google Scholar 

  • Porteus MH, Canthomen T, Weitzman MD, Baltimore D (2003) Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol Cell Biol 23: 3558–3565.

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2002) Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27: 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Verschure PJ, van der Kraan I, de Leeuw W et al. (2005) In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol Cell Biol 25: 4552–4564.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Szoka FC (1996) Mechanism of DNA release in cationic liposomemediated gene transfection. Biochemistry 35: 5616–5623.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladan Ondřej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ondřej, V., Kozubek, S., Lukášová, E. et al. Directional motion of foreign plasmid DNA to nuclear HP1 foci. Chromosome Res 14, 505–514 (2006). https://doi.org/10.1007/s10577-006-1058-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1058-1

Key words

Navigation