Skip to main content
Log in

Identification of novel acyl-ACP thioesterase gene ClFATB1 from Cinnamomum longepaniculatum

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A putative fatty acyl-acyl carrier protein (acyl-ACP) thioesterase (thioesterase) full-length cDNA sequence named as ClFATB1 was obtained from the seed cDNA library of Cinnamomum longepaniculatum by the SMART-RACE method. The novel gene encodes a protein of 382 amino acid residues with close homology to fatty acid thioesterase type B (FATB) enzymes of other plants, with two essential residues (His285 and Cys320) for thioesterase catalytic activity. The gene was transcribed in all tissues of C. longepaniculatum, the highest being in seeds. Recombinant ClFATB1 in Escherichia coli had higher specific activities against saturated 16:0- and 18:0-ACPs than on unsaturated 18:1-ACP. Overexpression of ClFATB1 in transgenic tobaccos upregulated thioesterase activities of crude proteins against 16:0-ACP and 18:0-ACP by 20.3 and 5.7%, respectively, and resulted in an increase in the contents of palmitic and stearic acids by 15.4 and 10.5%, respectively. However, ectopic expression of this gene decreased the substrate specificities of crude proteins to unsaturated 18:1-ACP by 12.7% in transgenic tobacco and lowered the contents of oleic, linoleic, and linolenic acids in transgenic leaves. So ClFATB1 would potentially upregulate the synthesis of saturated fatty acids and downregulate unsaturated ones in the fatty acid synthesis pathway of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimakata, T., and Stumpf, P. K. (1982) Proc. Natl. Acad. Sci. USA, 79, 5808–5812.

    Article  PubMed  CAS  Google Scholar 

  2. Voelker, T. A., Worrell, A. C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D. J., Radke, S. E., and Davies, H. M. (1992) Science, 257, 72–74.

    Article  PubMed  CAS  Google Scholar 

  3. Hellyer, A., Leadlay, P. F., and Slabas, A. R. (1992) Plant Mol. Biol., 20, 763–780.

    Article  PubMed  CAS  Google Scholar 

  4. Moreno-Perez, A. J., Sanchez-Garcia, A., Salas, J. J., Garces, R., and Martinez-Force, E. (2011) Plant Physiol. Biochem., 49, 82–87.

    Article  PubMed  CAS  Google Scholar 

  5. Jones, A., Davies, H. M., and Voelker, T. A. (1995) Plant Cell, 7, 359–371.

    PubMed  CAS  Google Scholar 

  6. Sanchez-Garcia, A., Moreno-Perez, A. J., Muro-Pastor, A. M., Salas, J. J., Garces, R., and Martinez-Force, E. (2010) Phytochemistry, 71, 860–869.

    Article  PubMed  CAS  Google Scholar 

  7. Komari, T., Hiei, Y., Saito, Y., Murai, N., and Kumashiro, T. (1996) Plant J., 10, 165–174.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, T., You, L., Cui, X., Tian, W., Huang, N., and Li, X. (2009) Wei Sheng Wu Xue Bao, 49, 573–579.

    PubMed  CAS  Google Scholar 

  9. Tabansky, I., and Nurminsky, D. I. (2003) Biotechniques, 34, 485–486.

    Google Scholar 

  10. Gao, J., Zhang, S., Cai, F., Zheng, X., Lin, N., Qin, X., Ou, Y., Gu, X., Zhu, X., Xu, Y., and Chen, F. (2012) Mol. Biol. Rep., 39, 3443–3452.

    Article  PubMed  Google Scholar 

  11. Bostanian, N. J., Beudjekian, S., McGregor, E., and Racette, G. (2009) J. Econ. Entomol., 102, 2084–2089.

    Article  PubMed  CAS  Google Scholar 

  12. Jha, J. K., Maiti, M. K., Bhattacharjee, A., Basu, A., Sen, P. C., and Sen, S. K. (2006) Plant Physiol. Biochem., 44, 645–655.

    Article  PubMed  CAS  Google Scholar 

  13. Bonaventure, G., Bao, X., Ohlrogge, J., and Pollard, M. (2004) Plant Physiol., 135, 1269–1279.

    Article  PubMed  CAS  Google Scholar 

  14. Mayer, K. M., and Shanklin, J. (2005) J. Biol. Chem., 280, 3621–3627.

    Article  PubMed  CAS  Google Scholar 

  15. Dehesh, K., Jones, A., Knutzon, D. S., and Voelker, T. A. (1996) Plant J., 9, 167–172.

    Article  PubMed  CAS  Google Scholar 

  16. Salas, J. J., and Ohlrogge, J. B. (2002) Arch. Biochem. Biophys., 403, 25–34.

    Article  PubMed  CAS  Google Scholar 

  17. Hawkins, D. J., and Kridl, J. C. (1998) Plant J., 13, 743–752.

    Article  PubMed  CAS  Google Scholar 

  18. Huynh, T. T., Pirtle, R. M., and Chapman, K. D. (2002) Plant Physiol. Biochem., 40, 1–9.

    Article  CAS  Google Scholar 

  19. Wu, P. Z., Li, J., Wei, Q., Zeng, L., Chen, Y. P., Li, M. R., Jiang, H. W., and Wu, G. J. (2009) Tree Physiol., 29, 1299–1305.

    Article  PubMed  CAS  Google Scholar 

  20. Dormann, P., Voelker, T. A., and Ohlrogge, J. B. (2000) Plant Physiol., 123, 637–644.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, N., Ai, Tb., Gao, Jh. et al. Identification of novel acyl-ACP thioesterase gene ClFATB1 from Cinnamomum longepaniculatum . Biochemistry Moscow 78, 1298–1303 (2013). https://doi.org/10.1134/S0006297913110114

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913110114

Key words

Navigation