Skip to main content
Log in

Identification and analysis of MAPK cascade gene families of Camellia oleifera and their roles in response to cold stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Low-temperature severely limits the growth and development of Camellia oleifera (C. oleifera). The mitogen-activated protein kinase (MAPK) cascade plays a key role in the response to cold stress.

Methods and results

Our study aims to identify MAPK cascade genes in C. oleifera and reveal their roles in response to cold stress. In our study, we systematically identified and analyzed the MAPK cascade gene families of C. oleifera, including their physical and chemical properties, conserved motifs, and multiple sequence alignments. In addition, we characterized the interacting networks of MAPKK kinase (MAPKKK)-MAPK kinase (MAPKK)-MAPK in C. oleifera. The molecular mechanism of cold stress resistance of MAPK cascade genes in wild C. oleifera was analyzed by differential gene expression and real-time quantitative reverse transcription-PCR (qRT-PCR).

Conclusion

In this study, 21 MAPKs, 4 MAPKKs and 55 MAPKKKs genes were identified in the leaf transcriptome of C. oleifera. According to the phylogenetic results, MAPKs were divided into 4 groups (A, B, C and D), MAPKKs were divided into 3 groups (A, B and D), and MAPKKKs were divided into 2 groups (MEKK and Raf). Motif analysis showed that the motifs in each subfamily were conserved, and most of the motifs in the same subfamily were basically the same. The protein interaction network based on Arabidopsis thaliana (A. thaliana) homologs revealed that MAPK, MAPKK, and MAPKKK genes were widely involved in C. oleifera growth and development and in responses to biotic and abiotic stresses. Gene expression analysis revealed that the CoMAPKKK5/CoMAPKKK43/CoMAPKKK49—CoMAPKK4—CoMAPK8 module may play a key role in the cold stress resistance of wild C. oleifera at a high-elevation site in Lu Mountain (LSG). This study can facilitate the mining and utilization of genetic resources of C. oleifera with low-temperature tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The transcriptome data used in this study can be found in online repositories. The name of the repository and accession number can be found below: NCBI Sequence Read Archive, PRJNA915196. In addition to the transcriptome data, all other data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Qin S, Rong J, Zhang W, Chen J (2018) Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin. Biodiv Sci 26(4):384–395. https://doi.org/10.17520/biods.2017254

    Article  Google Scholar 

  2. Peng SF, Lu J, Zhang Z, Ma L, Liu CX, Chen YZ (2020) Global transcriptome and correlation analysis reveal cultivar-specific molecular signatures associated with fruit development and fatty acid determination in Camellia oleifera Abel. Int J Genomics 2020:6162802. https://doi.org/10.1155/2020/6162802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng J-L, Yang Z-J, Chen S-P, El-Kassaby YA, Chen H (2017) Signaling pathway in development of Camellia oleifera nurse seedling grafting union. Trees-Struct Funct 31(5):1543–1558. https://doi.org/10.1007/s00468-017-1568-9

    Article  CAS  Google Scholar 

  4. Li C, Long Y, Lu M, Zhou J, Wang S, Xu Y, Tan X (2023) Gene coexpression analysis reveals key pathways and hub genes related to late-acting self-incompatibility in Camellia oleifera. Front Plant Sci. https://doi.org/10.3389/fpls.2022.1065872

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin M, Wang S, Liu Y, Li J, Zhong H, Zou F, Yuan D (2022) Hydrogen cyanamide enhances flowering time in tea oil Camellia (Camellia oleifera Abel.). Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2021.114313

    Article  Google Scholar 

  6. Xie H, Zhang J, Cheng J, Zhao S, Wen Q, Kong P, Zhao Y, Xiang X, Rong J (2023) Field plus lab experiments help identify freezing tolerance and associated genes in subtropical evergreen broadleaf trees: a case study of Camellia oleifera. Front Plant Sci. https://doi.org/10.3389/fpls.2023.1113125

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhou J, Lu M, Yu S, Liu Y, Yang J, Tan X (2020) In-depth understanding of Camellia oleifera self-incompatibility by comparative transcriptome, proteome and metabolome. Int J Mol Sci. https://doi.org/10.3390/ijms21051600

    Article  PubMed  PubMed Central  Google Scholar 

  8. Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195(4):737–751. https://doi.org/10.1111/j.1469-8137.2012.04239.x

    Article  CAS  PubMed  Google Scholar 

  9. Wisniewski M, Nassuth A, Teulieres C, Marque C, Rowland J, Cao PB, Brown A (2014) Genomics of cold hardiness in woody plants. Crit Rev Plant Sci 33(2–3):92–124. https://doi.org/10.1080/07352689.2014.870408

    Article  CAS  Google Scholar 

  10. Chen J, Yang X, Huang X, Duan S, Long C, Chen J, Rong J (2017) Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation. BMC Genom. https://doi.org/10.1186/s12864-017-3570-4

    Article  Google Scholar 

  11. Lin L, Wu J, Jiang M, Wang Y (2021) Plant mitogen-activated protein kinase cascades in environmental stresses. Int J Mol Sci. https://doi.org/10.3390/ijms22041543

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun TJ, Zhang YL (2022) MAP kinase cascades in plant development and immune signaling. EMBO Rep. https://doi.org/10.15252/embr.202153817

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, Zou T, Lu G (2015) Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genom. https://doi.org/10.1186/s12864-015-1621-2

    Article  Google Scholar 

  14. Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226. https://doi.org/10.1042/bj20080625

    Article  CAS  PubMed  Google Scholar 

  15. Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang SQ, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC, Grp M (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7(7):301–308

    Article  CAS  Google Scholar 

  16. Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5(5):415–424. https://doi.org/10.1016/s1369-5266(02)00285-6

    Article  CAS  PubMed  Google Scholar 

  17. Hamel L-P, Nicole M-C, Sritubtim S, Morency M-J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11(4):192–198. https://doi.org/10.1016/j.tplants.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  18. Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In Silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res 17(3):139–153. https://doi.org/10.1093/dnares/dsq011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chatterjee A, Paul A, Unnati GM, Rajput R, Biswas T, Kar T, Basak S, Mishra N, Pandey A, Srivastava AP (2020) MAPK cascade gene family in Camellia sinensis:In-silicoidentification, expression profiles and regulatory network analysis. BMC Genom. https://doi.org/10.1186/s12864-020-07030-x

    Article  Google Scholar 

  20. Paul A, Srivastava AP, Subrahmanya S, Shen GX, Mishra N (2021) In-silico genome wide analysis of mitogen activated protein kinase kinase kinase gene family in C. sinensis. PLoS One. https://doi.org/10.1371/journal.pone.0258657

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim S-H, Woo D-H, Kim J-M, Lee S-Y, Chung WS, Moon Y-H (2011) Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophys Res Commun 412(1):150–154. https://doi.org/10.1016/j.bbrc.2011.07.064

    Article  CAS  PubMed  Google Scholar 

  22. Teige M, Scheikl E, Eulgem T, Doczi F, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15(1):141–152. https://doi.org/10.1016/j.molcel.2004.06.023

    Article  CAS  PubMed  Google Scholar 

  23. Xing Y, Chen WH, Jia WS, Zhang JH (2015) Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J Exp Bot 66(19):5971–5981. https://doi.org/10.1093/jxb/erv305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang C, Lu W, He X, Wang F, Zhou Y, Guo X, Guo X (2016) The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol 57(8):1629–1642. https://doi.org/10.1093/pcp/pcw090

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Li M, Wang P, Cox KL Jr, Duan L, Dever JK, Shan L, Li Z, He P (2017) Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol 215(4):1462–1475. https://doi.org/10.1111/nph.14680

    Article  CAS  PubMed  Google Scholar 

  26. Zhao C, Wang P, Si T, Hsu C-C, Wang L, Zayed O, Yu Z, Zhu Y, Dong J, Tao WA, Zhu J-K (2017) MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev Cell 43(5):618. https://doi.org/10.1016/j.devcel.2017.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie G, Kato F, Imai R (2012) Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J 443:95–102. https://doi.org/10.1042/bj20111792

    Article  CAS  PubMed  Google Scholar 

  28. Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H (2010) A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63(4):599–612. https://doi.org/10.1111/j.1365-313X.2010.04264.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1002195

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659. https://doi.org/10.1093/bioinformatics/btl158

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Gong M, Guo J, Xin H, Gao Y, Liu C, Dai D, Tang L (2018) Genome-wide identification of Jatropha curcas MAPK, MAPKK, and MAPKKK gene families and their expression profile under cold stress. Sci Rep. https://doi.org/10.1038/s41598-018-34614-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49(D1):D412–D419. https://doi.org/10.1093/nar/gkaa913

    Article  CAS  PubMed  Google Scholar 

  33. Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49(D1):D458–D460. https://doi.org/10.1093/nar/gkaa937

    Article  CAS  PubMed  Google Scholar 

  34. Xiao-Lin Z, Bao-Qiang W, Xiao-Hong W (2022) Identification and expression analysis of the CqSnRK2 gene family and a functional study of the CqSnRK2.12 gene in quinoa (Chenopodium quinoa Willd.). BMC Genom 23(1):397. https://doi.org/10.1186/s12864-022-08626-1

    Article  CAS  Google Scholar 

  35. Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C (2021) Expasy, the swiss bioinformatics resource Portal, as designed by its users. Nucleic Acids Res 49(W1):W216–W227. https://doi.org/10.1093/nar/gkab225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Ran K, Dong Q, Zhao Q, Shi S (2020) Cloning, sequencing, and expression analysis of 32 NAC transcription factors (MdNAC) in apple. PeerJ 8:e8249. https://doi.org/10.7717/peerj.8249

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):W39–W49. https://doi.org/10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li J, Yu HW, Liu ML, Chen BW, Dong N, Chang XW, Wang JT, Xing SH, Peng HS, Zha LP, Gui SY (2022) Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus. Plant Signaling Behav. https://doi.org/10.1080/15592324.2022.2089473

    Article  Google Scholar 

  39. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  40. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  41. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He Z, Zhang H, Gao S, Lercher MJ, Chen W-H, Hu S (2016) Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res 44(W1):W236–W241. https://doi.org/10.1093/nar/gkw370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  45. Danquah A, de Zelicourt A, Boudsocq M, Neubauer J, Frey NFD, Leonhardt N, Pateyron S, Gwinner F, Tamby J-P, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J (2015) Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J 82(2):232–244. https://doi.org/10.1111/tpj.12808

    Article  CAS  PubMed  Google Scholar 

  46. Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19(10):3266–3279. https://doi.org/10.1105/tpc.106.050039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41(6):649–660. https://doi.org/10.1016/j.molcel.2011.02.029

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19(3):805–818. https://doi.org/10.1105/tpc.106.046581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miles GP, Samuel MA, Zhang YL, Ellis BE (2005) RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environ Pollut 138(2):230–237. https://doi.org/10.1016/j.envpol.2005.04.017

    Article  CAS  PubMed  Google Scholar 

  50. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983. https://doi.org/10.1038/415977a

    Article  CAS  PubMed  Google Scholar 

  51. Yoo S-D, Cho Y-H, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451(7180):789-U781. https://doi.org/10.1038/nature06543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ren D, Liu Y, Yang K-Y, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 105(14):5638–5643. https://doi.org/10.1073/pnas.0711301105

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou C, Cai Z, Guo Y, Gan S (2009) An Arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiol 150(1):167–177. https://doi.org/10.1104/pp.108.133439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54(3):440–451. https://doi.org/10.1111/j.1365-313X.2008.03433.x

    Article  CAS  PubMed  Google Scholar 

  55. Xing Y, Jia W, Zhang J (2009) AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination. Plant Mol Biol 70(6):725–736. https://doi.org/10.1007/s11103-009-9503-0

    Article  CAS  PubMed  Google Scholar 

  56. Kong Q, Qu N, Gao MH, Zhang ZB, Ding XJ, Yang F, Li YZ, Dong OX, Chen S, Li X, Zhang YL (2012) The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. Plant Cell 24(5):2225–2236. https://doi.org/10.1105/tpc.112.097253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Minghui G, Jinman L, Dongling B, Zhibin Z, Fang C, Sanfeng C, Yuelin Z (2008) MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 18(12):1190–1198. https://doi.org/10.1038/cr.2008.300

    Article  Google Scholar 

  58. Zeng Q, Sritubtim S, Ellis BE (2011) AtMKK6 and AtMPK13 are required for lateral root formation in Arabidopsis. Plant Signaling Behav 6(10):1436–1439. https://doi.org/10.4161/psb.6.10.17089

    Article  CAS  Google Scholar 

  59. Liu Z, Lv Y, Zhang M, Liu Y, Kong L, Zou M, Lu G, Cao J, Yu X (2013) Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom. https://doi.org/10.1186/1471-2164-14-594

    Article  Google Scholar 

  60. Hong S, Lim YP, Kwon SY, Shin AY, Kim YM (2021) Genome-wide comparative analysis of flowering-time genes; insights on the gene family expansion and evolutionary perspective. Front Plant Sci. https://doi.org/10.3389/fpls.2021.702243

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tanoue T, Adachi M, Moriguchi T, Nishida E (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2(2):110–116. https://doi.org/10.1038/35000065

    Article  CAS  PubMed  Google Scholar 

  62. Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G (2012) Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One. https://doi.org/10.1371/journal.pone.0046744

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (32260306) and the National Natural Science Foundation of China (32270238) for funding and supporting of this study.

Funding

This study was funded by the National Natural Science Foundation of China (32260306) and the National Natural Science Foundation of China (32270238).

Author information

Authors and Affiliations

Authors

Contributions

K.X., J.Z., X.X., Y.Z. and J.R. designed the experiments. K.X. conducted the experiments with help from J.Z., H.X., L.Z., H.Z., L.F., J.Z., X.X. and Y.Z. K.X., J.Z., H.X., L.Z., H.Z., L.F., J.Z., X.X., Y.Z. and J.R. participated in data analyses. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This declaration does not apply to our study.

Consent to participate

This declaration does not apply to our study.

Consent to publish

This declaration does not apply to our study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2024_9551_MOESM1_ESM.tif

Supplementary file1 (TIF 2345 KB)—Supplementary Fig 1 Gene expression levels of differentially expressed genes (DEGs) through RNA-seq and qRT-PCR analyses. Data are presented as the mean between treated and control samples at each time point ± standard error (SE).

11033_2024_9551_MOESM2_ESM.xlsx

Supplementary file2 (XLSX 49 KB)—Supplementary Table S0. Author names, affiliation and e-mail address of the corresponding author. Supplementary Table S1. MAPK, MAPKK and MAPKKK families in Arabidopsis thaliana, Oryza sativa and Camellia sinensis. Supplementary Table S2. Characteristics of MAPK, MAPKK and MAPKKK gene families in Camellia oleifera. Supplementary Table S3. Motif analysis of MAPK, MAPKK and MAPKKK families in Camellia oleifera. Supplementary Table S4. Identification of homologous proteins in the Camellia oleifera MAPK cascade genes by the BLASTP algorithm. Supplementary Table S5. Expression data of Camellia oleifera MAPK cascade genes under cold stress. Supplementary Table S6. The primer sequences used for qRT-PCR.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, K., Zhang, J., Xie, H. et al. Identification and analysis of MAPK cascade gene families of Camellia oleifera and their roles in response to cold stress. Mol Biol Rep 51, 602 (2024). https://doi.org/10.1007/s11033-024-09551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09551-0

Keywords

Navigation