Skip to main content
Log in

Characterization, and expression profile of a phenylalanine ammonia lyase gene from Jatropha curcas L.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A PAL gene designated as JcPAL1 was cloned from J. curcas L. The full-length is 2336 bp in size with one intron and two exons, encoding a polypeptide of 713 amino acids. Its 5′-upstream region is rich in putative cis-elements including not only PAL typical TATA box, L-box and transcriptional initiation site (TIS) but also light responding motifs. Expression pattern analysis indicated that JcPAL1 were expressed in all tissues, most highly in flowers. When Treated with ABA, GA3, high and low temperature, expression of JcPAL1 were induced. Recombinant JcPAL1 has a pH optimum at 8.7 and a temperature optimum at 60°C in 100 mM Tris–HCl buffer. The Km and Kcat values are 0.125 mM and 1.73 S−1 for l-phenylalanine, and 1.312 mM and 0.109 S−1 for l-tyrosine, respectively. These findings suggested that JcPAL1 might involve in the J. curcas responding to various stresses and l-Phe should be its true physiological substrate. This study is essential prior to uncover whether and how the PAL initiated phenylpropanoid metabolic networks functioning in the defense responses of J. curcas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHS:

Chalcone synthase

CTAB:

Cetyltrimethylammonium bromide

Inr:

Initiator

IPTG:

Isopropyl-β-d-thiogalactopyranoside

MIO:

4-Methylidien-imidazole-5-one

ORF:

Open reading frame

PAL:

Phenylalanine ammonia lyase

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcription-polymerase chain reaction

4CL:

4-Coumarate CoA ligase

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TIS:

Transcriptional initiation site

Tris:

Tris(hydroxymethyl) aminomethane

UTR:

Untranslated region

E. coli :

Escherichia Coli

References

  1. Hanson KR, Havir EA (1979) An introduction to the enzymology of phenylpro-panoid biosynthesis. Rec Adv Phytochem 12:91–137

    Google Scholar 

  2. Whetten RW, Sederoff RR (1992) Phenylalanine ammonia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clones. Plant Physiol 98:380–386

    Article  PubMed  CAS  Google Scholar 

  3. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  PubMed  CAS  Google Scholar 

  4. Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    Article  PubMed  CAS  Google Scholar 

  5. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097

    Article  PubMed  CAS  Google Scholar 

  6. Koukol J, Conn EE (1961) The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem 236:2692–2698

    PubMed  CAS  Google Scholar 

  7. Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N (1994) Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym.). Eur J Biochem 225:491–499

    Article  PubMed  CAS  Google Scholar 

  8. Cramer CL, Edwards K, Dron M, Liang X, Dildine SL, Bolwell GP, Dixon RA, Lamb CJ, Schuch W (1989) Phenylalanine ammonia-lyase gene organization and structure. Plant Mol Biol 12:367–383

    Article  CAS  Google Scholar 

  9. Morrison TA, Buxton DR (1993) Activity of phenylalanine ammonia-lyase, tyrosine ammonia-lyase, and cinnamyl alcohol dehydrogenase in the maize stalk. Crop Sci 33:1264–1268

    Article  CAS  Google Scholar 

  10. Minami E, Ozeki Y, Matsuoka M, Koizuka N, Tanaka Y (1989) Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur J Biochem 185:19–25

    Article  PubMed  CAS  Google Scholar 

  11. Tanaka Y, Uritani I (1977) Purification and properties of phenylalanine ammonia-lyase in cut-injured sweet potato. J Biochem 81:963–970

    PubMed  CAS  Google Scholar 

  12. Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327–338

    Article  PubMed  CAS  Google Scholar 

  13. Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557–1564

    Article  PubMed  CAS  Google Scholar 

  14. Subramaniam R, Reinold S, Molitor EK, Douglas CJ (1993) Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa × Populus deltoides) phenylalanine ammonia-lyase genes. Plant Physiol 102:71–83

    Article  PubMed  CAS  Google Scholar 

  15. Joos HJ, Hahlbrock K (1992) Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.). Genomic complexity, structural comparison of two selected genes and modes of expression. Eur J Biochem 204:621–629

    Article  PubMed  CAS  Google Scholar 

  16. Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA 92:5905–5909

    Article  PubMed  CAS  Google Scholar 

  17. Lois R, Dietrich A, Hahlbrock K, Schulz W (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J 8:1641–1648

    PubMed  CAS  Google Scholar 

  18. Camm EL, Towers GHN (1973) Phenylalanine ammonia-lyase. Phytochemistry 12:961–973

    Article  CAS  Google Scholar 

  19. Watanabe SK, Hernandez-Velazco G, Iturbe-Chiñas F, Lopez-Munguia A (1992) Phenylalanine ammonia lyase from Sporidiobolus pararoseus and Rhodosporidium toruloides: application for phenylalanine and tyrosine deamination. World J Microbiol Biotechnol 8:406–410

    Article  CAS  Google Scholar 

  20. Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T (2004) Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry 43:11403–11416

    Article  PubMed  CAS  Google Scholar 

  21. Kyndt JA, Meyer TE, Cusanovich MA, Van Beeumen JJ (2002) Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett 512:240–244

    Article  PubMed  CAS  Google Scholar 

  22. Moffitt MC, Louie GV, Bowman ME, Pence J, Noel JP, Moore BS (2007) Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry 46:1004–1012

    Article  PubMed  CAS  Google Scholar 

  23. Ogata K, Uchiyama K, Yamada H (1967) Metabolism of aromatic amino acid in microorganisms. Part I: formation of cinnamic acid from phenylalanine. Agric Biol Chem 31:200–206

    Article  CAS  Google Scholar 

  24. Xiang L, Moore BS (2005) Biochemical characterization of a prokaryotic phenylalanine ammonia lyase. J Bacteriol 187:4286–4289

    Article  PubMed  CAS  Google Scholar 

  25. Chen MQ, Hou LL, Zhang GW (1988) The diterpenoids from Jatropha curcas L. Acta Bot Sin 30:308–311

    CAS  Google Scholar 

  26. Naengchomnong W, Tarnchompoo B, Thebtaranonth Y (1994) (+)-Jatropha, (+)-marmesin, propacin and jatrophin from the roots of Jatropha curcas (Euphorbiaceae. J Sci Soc Thail 20:73–83

    Article  Google Scholar 

  27. Subramanian SS, Nagarajan S, Sulochana N (1971) Flavonoids of some euphorbiaceous plants. Phytochemistry 10:2548–2549

    Article  CAS  Google Scholar 

  28. Saneoka H, Ishiguro S, Moghaieb REA (2001) Effect of salinity and abscisic acid on accumulation of glycinebetaine and betaine aldehyde dehydrogenase mRNA in Sorghum leaves (Sorghum bicolor). J Plant Physiol 158:853–859

    Article  CAS  Google Scholar 

  29. Steenkamp J, Wild I, Lourens A, Helden Pv (1994) Improved method for DNA extraction from Vitis vinifera. Am J Enol Vitic 45:102–106

    CAS  Google Scholar 

  30. Havir EA, Hanson KR (1968) l-Phenylalanine ammonia-lyase. II. Mechanism and kinetic properties of the enzyme from potato tubers. Biochemistry 7:1904–1914

    Article  PubMed  CAS  Google Scholar 

  31. Havir EA, Hanson KR (1968) l-Phenylalanine ammonia-lyase. I. Purification and molecular size of the enzyme from potato tubers. Biochemistry 7:1896–1903

    Article  PubMed  CAS  Google Scholar 

  32. Allwood EG, Davies DR, Gerrish C, Ellis BE, Bolwell GP (1999) Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett 457:47–52

    Article  PubMed  CAS  Google Scholar 

  33. Ritter H, Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16:3426–3436

    Article  PubMed  CAS  Google Scholar 

  34. Lorkovic ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W (2000) Pre-mRNA splicing in higher plants. Trends Plant Sci 5:160–167

    Article  PubMed  CAS  Google Scholar 

  35. Zhu Q, Dabi T, Lamb C (1995) TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell 7:1681–1689

    Article  PubMed  CAS  Google Scholar 

  36. Ohl S, Hedrick SA, Chory J, Lamb CJ (1990) Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell 2:837–848

    Article  PubMed  CAS  Google Scholar 

  37. Gray-Mitsumune M, Molitor EK, Cukovic D, Carlson JE, Douglas CJ (1999) Developmentally regulated patterns of expression directed by poplar PAL promoters in transgenic tobacco and poplar. Plant Mol Biol 39:657–669

    Article  PubMed  CAS  Google Scholar 

  38. Seymour K (1987) Metabolism of aromatic amino acids and amines. Methods aromatic amino acids and amines. Methods Enzymol 142:1–732

    Google Scholar 

  39. Imura Y, Iguchi S, Toyoda K, Ichimose Y, Shirashi T, Yamada T (2000) Importance of AC-rich element on pea phenylalanine ammonia-lyase gene 1 promoter for expression induced by nonpathogenic attack. J Gen Plant Pathol 66:123–127

    Article  CAS  Google Scholar 

  40. Xu B, Timko M (2004) Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Mol Biol 55:743–761

    Article  PubMed  CAS  Google Scholar 

  41. Yamada T, Sriprasertsak P, Kato H, Hashimoto T, Shimizu H, Shiraishi T (1994) Functional analysis of the promoters of phenylalanine ammonia-lyase genes in pea. Plant Cell Physiol 35:917–926

    PubMed  CAS  Google Scholar 

  42. Donald RG, Cashmore AR (1990) Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9:1717–1726

    PubMed  CAS  Google Scholar 

  43. Lee BK, Park MR, Srinivas B, Chun JC, Kwon IS, Chung IM, Yoo NH, Choi KG, Yun SJ (2003) Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa. Mol Cells 16:34–39

    PubMed  CAS  Google Scholar 

  44. Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton MA, Lamb C (1995) Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol Biol 29:535–550

    Article  PubMed  CAS  Google Scholar 

  45. Pellegrini L, Rohfritsch O, Fritig B, Legrand M (1994) Phenylalanine ammonia-lyase in tobacco. Molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Physiol 106:877–886

    Article  PubMed  CAS  Google Scholar 

  46. Liu RR, Xu SH, Li JL, Hu YL, Lin ZP (2006) Expression profile of a PAL gene from Astragalus membranaceus var. Mongholicus and its crucial role in flux into flavonoid biosynthesis. Plant Cell Rep 25:705–710

    Article  PubMed  CAS  Google Scholar 

  47. Kumar A, Ellis BE (2001) The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol 127:230–239

    Article  PubMed  CAS  Google Scholar 

  48. Campos-Vargas R, Saltveit ME (2002) Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol Plant 114:73–84

    Article  PubMed  CAS  Google Scholar 

  49. Lee SW, Heinz R, Robb J, Nazar RN (1994) Differential utilization of alternate initiation sites in a plant defense gene responding to environmental stimuli. Eur J Biochem 226:109–114

    Article  PubMed  CAS  Google Scholar 

  50. Rosler J, Krekel F, Amrhein N, Schmid J (1997) Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol 113:175–179

    Article  PubMed  CAS  Google Scholar 

  51. MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by National Key Technology R&D Program of 11th Five-Year Plan of China (No. 2006BAD07A04), General Program of National Natural Science Foundation of China (No. 30670204), China International Science and Technology Cooperation Project (No. 2006DFB63400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xu.

Additional information

Jihai Gao and Shuwen Zhang are Co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1873 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Zhang, S., Cai, F. et al. Characterization, and expression profile of a phenylalanine ammonia lyase gene from Jatropha curcas L.. Mol Biol Rep 39, 3443–3452 (2012). https://doi.org/10.1007/s11033-011-1116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1116-4

Keywords

Navigation