Skip to main content
Log in

A Review on Microbial Alkaline Proteases: Optimization of Submerged Fermentative Production, Properties, and Industrial Applications

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract—Due to the growing need for alkaline proteases in various industrial applications, the preference for microbial sources, such as bacteria and fungi, has surged in comparison to plant and animal-derived alternatives. These microorganisms which can be isolated from natural alkaline habitats have emerged as promising candidates for large-scale industrial production. To meet this demand, greater attention is being given to improving the enzyme yields by optimizing culture conditions employing various approaches, viz., optimization of environmental and nutritional factors, statistical methodologies for screening, strain improvement, etc. Although acidic and neutral proteases are currently in industrial use, this review focuses on alkaline proteases from various sources because of their catalytic abilities at extreme pH values. While acidic proteases do possess distinctive and valuable catalytic capabilities at extreme pH values, they are predominantly utilized in the food industry for specific applications and are primarily produced by fungi, in contrast to alkaline proteases. Considering this, the present review focuses extensively on various environmental and nutritional factors affecting alkaline protease production in submerged fermentation. Additionally, the purification methodologies adopted, and properties of alkaline proteases obtained from different sources are discussed, and the industrial applications of alkaline proteases are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ferrero, M.A., Castro, G.R., Abate, C.M., Baigori, M.D., and Sineriz, F., Appl. Microbiol. Biotechnol., 1996, vol. 45, pp. 327–332. https://doi.org/10.1007/s002530050691

    Article  CAS  Google Scholar 

  2. Kumar, C.G., Tiwari, M.P., and Jany, K.D., Process Biochem., 1999, vol. 34, pp. 441–449. https://doi.org/10.1016/S0032-9592(98)00110-1

    Article  CAS  Google Scholar 

  3. Cowan, D., Trends Biotechnol., 1996, vol. 14, pp. 177–178.

    Article  CAS  Google Scholar 

  4. Gupta, R., Beg, Q.K., Khan, S., and Chauhan, B., Appl. Microbiol. Biotechnol., 2002, vol. 60, pp. 381–395. https://doi.org/10.1007/s00253-002-1142-1

    Article  CAS  PubMed  Google Scholar 

  5. Sivakumar, N., Remya, R., and Al Bahry, S., J. Appl. Biol. Sci., 2009, vol. 3, pp. 71–75.

    Google Scholar 

  6. Al-Shehri., Abdulrahman, M., and Yasser, M.S., Pakistan J. Biol. Sci., 2004, vol. 7, pp. 1631–1635. https://doi.org/10.3923/pjbs.2004.1631.1635

    Article  Google Scholar 

  7. Ramkumar, A., Sivakumar, N., Gujarathi, A.M., and Reginald, V., Sci. Rep., 2018, vol. 8, p. 12442. https://doi.org/10.1038/s41598-018-30155-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chellappan, S., Jasmin, C., Basheer, S.M., Elyas, K.K., Bhat, S.G., and Chandrasekaran, M., Process Biochem., 2006, vol. 41, pp. 956–961. https://doi.org/10.1016/j.procbio.2005.10.017

    Article  CAS  Google Scholar 

  9. Chi, Z., Ma, C., Wang, P., and Li, H. F., Bioresour. Technol., 2007, vol. 98, pp. 534–538. https://doi.org/10.1016/j.biortech.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  10. Soccol, C.R., Da Costa, E.S.F., Letti, L.A.J., Karp, S.G., Woiciechowski, A.L., and de Souza Vandenberghe, L.P., Biotechnol. Res. Innov., 2017, vol. 1, pp. 52–71. https://doi.org/10.1016/j.biori.2017.01.002

    Article  Google Scholar 

  11. Gimenes, N.C., Silveira, E., and Tambourgi, E.B., Sep. Purif. Rev., 2019, vol. 50, pp. 223–243. https://doi.org/10.1080/15422119.2019.1677249

    Article  CAS  Google Scholar 

  12. López-Trujillo, J., Mellado-Bosque, M., Ascacio-Valdés, J.A., Prado-Barragán, L.A., Hernández-Herrera, J.A., and Aguilera-Carbó, A.F., Fermentation, 2023, vol. 9, pp. 819–833. https://doi.org/10.3390/fermentation9090819

    Article  CAS  Google Scholar 

  13. Nascimento, F.Vd., Lemes, A.C., Castro, A.Md., Secchi, A.R., and Coelho M.A.Z., Processes, 2022, vol. 10, pp. 381–399. https://doi.org/10.3390/pr10020381

    Article  CAS  Google Scholar 

  14. Fasim, A., More, V.S., and More, S.S., Curr. Opin. Biotechnol., 2021, vol. 69, pp. 68–76. https://doi.org/10.1016/j.copbio.2020.12.002

    Article  CAS  PubMed  Google Scholar 

  15. Farinas, C.S., Renew. Sustain. Energ. Rev., 2015, vol. 52, pp. 179–188. https://doi.org/10.1016/j.rser.2015.07.092

    Article  CAS  Google Scholar 

  16. Dutta, J.R. and Banerjee, R., Braz. Arch. Biol. Technol., 2006, vol. 49, pp. 37–47. https://doi.org/10.1590/S1516-89132006000100005

    Article  CAS  Google Scholar 

  17. Sharmin, F. and Rahman, M., Agric. Eng. Int., 2007, vol. 9, pp. 1–10.

    Google Scholar 

  18. Prakasham, R.S., Subba Rao, Ch., and Sarma, P.N., Bioresour. Technol., 2006, vol. 97, pp. 1449–1454. https://doi.org/10.1016/j.biortech.2005.07.015

    Article  CAS  PubMed  Google Scholar 

  19. Vijayaraghavan, P., Jebamalar, T.R.J., and Vincent, S.G.P., Ann. Microbiol., 2012, vol. 62, pp. 403–410. https://doi.org/10.1007/s13213-011-0276-8

    Article  CAS  Google Scholar 

  20. Tehran, M.M., Shahnavaz, B., and Birjandi, R.G., Appl. Food Biotechnol., 2016, vol. 3, pp. 236–245. https://doi.org/10.22037/afb.v3i4.12776

    Article  Google Scholar 

  21. Bhaskar, N., Sudeepa, E.S., Rashmi, H.N., and Tamil Selvi, A., Bioresour. Technol., 2007, vol. 98, pp. 2758–2764. https://doi.org/10.1016/j.biortech.2006.09.033

    Article  CAS  PubMed  Google Scholar 

  22. Deng, A., Wu, J., Zhang, Y., Zhang, G., and Wen, T., Bioresour. Technol., 2010, vol. 101, pp. 7100–7106. https://doi.org/10.1016/j.biortech.2010.03.130

    Article  CAS  Google Scholar 

  23. Ellaiah, P., Divakar, G., Vasu, P., Sunitha M., and Shankar, P.U., Indian J. Biotechnol., 2005, vol. 4, pp. 497–500.

    CAS  Google Scholar 

  24. Ibrahim, A.S.S. and Al-Salamah, A.A., Res. J. Microbiol., 2009, vol. 4, pp. 251–259.

    Article  CAS  Google Scholar 

  25. Joshi, G.K., Kumar, S., and Sharma, V., Braz. J. Microbiol., 2007, vol. 38, pp. 773–779. https://doi.org/10.1590/S1517-83822007000400034

    Article  Google Scholar 

  26. Kanekar, P.P., Nilegaonkar, S.S., Sarnaik, S.S., and Kelkar, A.S., Bioresour. Technol., 2002, vol. 85, pp. 87–93. https://doi.org/10.1016/S0960-8524(02)00018-4

    Article  CAS  PubMed  Google Scholar 

  27. Karan, R., Singh, S.P., Kapoor, S., and Khare, S.K., New Biotechnol., 2011, vol. 28, pp. 136–145. https://doi.org/10.1016/j.nbt.2010.10.007

    Article  CAS  Google Scholar 

  28. Kalaiarasi, K. and Sunitha, P.U., Afr. J. Biotechnol., 2009, vol. 8, pp. 7035–7041. https://doi.org/10.5897/AJB2009.000-9547

    Article  CAS  Google Scholar 

  29. Denizci, A.A., Kazan, D., Abeln, E.C., and Erarslan, A., J. Appl. Microbiol., 2004, vol. 96, pp. 320–327. https://doi.org/10.1046/j.1365-2672.2003.02153.x

    Article  CAS  PubMed  Google Scholar 

  30. Mehrotra, S., Pandey, P.K., Gaur, R., and Darmwal, N.S., Bioresour. Technol., 1999, vol. 67, pp. 201–203. https://doi.org/10.1016/S0960-8524(98)00107-2

    Article  CAS  Google Scholar 

  31. Mukherjee, A.K. and Rai, S.K., New Biotechnol., 2011, vol. 28, pp. 182–189. https://doi.org/10.1016/j.nbt.2010.11.003

    Article  CAS  Google Scholar 

  32. Naidu, K.S.B. and Devi, K.L., Afr. J. Biotech., 2005, vol. 4, pp. 724–726. https://doi.org/10.5897/AJB2005.000-3132

    Article  CAS  Google Scholar 

  33. Rachanamol, R.S., Lipton, A.P., Thankamani, V., Sarika, A.R., and Selvin, J., J. Microb. Biochem. Technol., 2017, vol. 9, pp. 270–276. https://doi.org/10.4172/1948-5948.1000376

    Article  Google Scholar 

  34. Raj, A., Khess, N., Pujari, N., Bhattacharya, S., Das, A., and Rajan, S.S., Asian Pac. J. Trop. Biomed., 2012, vol. 2, pp. S1845–S1851. https://doi.org/10.1016/S2221-1691(12)60506-1

    Article  Google Scholar 

  35. Rajkumar, R., Jayappriyan, K.R., Ramesh Kannan, P., and Rengasamy, R., J. Ecobiotechnol., 2010, vol. 2, pp. 40–46.

    Google Scholar 

  36. Sangeetha, R., Geetha, A., and Arulpandi, I., Internet J. Microbiol., 2007, vol. 5, pp. 1–9. https://doi.org/10.5580/2126

    Article  Google Scholar 

  37. Sharma, K.M., Kumar, R., Vats, S., and Gupta, A., Int. J. Adv. Pharm. Biol. Chem., 2014, vol. 3, pp. 290–298.

    CAS  Google Scholar 

  38. Shine, K., Kanimozhi, K., Panneerselvam, A., Muthukumar, C., and Thajuddin, N., Int. J. Adv. Res. Biol. Sci., 2016, vol. 3, pp. 193–202.

    CAS  Google Scholar 

  39. Shumi, W., Hossain, M.D.T., and Anwar, M.N., Int. J. Agri. Biol., 2004, vol. 6, pp. 1097–1100.

    CAS  Google Scholar 

  40. Thys, R.C.S., Guzzon, S.O., Cladera-Olivera, F., and Brandelli, A., Process Biochem., 2006, vol. 41, pp. 67–73. https://doi.org/10.1016/j.procbio.2005.03.070

    Article  CAS  Google Scholar 

  41. Vidyasagar, M.S., Prakash, S.K., Jayalakshmi., and Sreeramulu, K., World J. Microbiol. Biotechnol., 2007, vol. 23, pp. 655–662. https://doi.org/10.1007/s11274-006-9279-1

    Article  CAS  Google Scholar 

  42. Mrudula, S., Apsana Begum, A., Ashwitha, K., and Pavan Kumar, P., Int. J. Pharm. Biosci., 2012, vol. 3, pp. 619–631.

    CAS  Google Scholar 

  43. Ramalingam, K., Nandhi, P., Murugan, R., and Venkatesan, R., J. Microbiol. Biotechnol. Food Sci., 2022, vol. 12, p. e5301. https://doi.org/10.55251/jmbfs.5301

    Article  CAS  Google Scholar 

  44. Alamnie, G., Gessesse, A., and Andualem, B., Biocatal. Agric. Biotechnol., 2023, vol. 50, p. 102750. https://doi.org/10.1016/j.bcab.2023.102750

    Article  CAS  Google Scholar 

  45. Boominadhan, U., Rajakumar, R., Sivakumaar, P.K.V., and Joe, M.M., Bot. Res. Int., 2009, vol. 2, pp. 83–87.

    CAS  Google Scholar 

  46. Vonothini, G., Murugan, M., Sivakumar, K., and Sudha, S., Afr. J. Biotechnol., 2008, vol. 7, pp. 3225–3230. https://doi.org/10.5897/AJB08.567

    Article  CAS  Google Scholar 

  47. Thumar, J.T. and Singh, S.P., Braz. J. Microbiol., 2007, vol. 38, pp. 766–772. https://doi.org/10.1590/S1517-83822007000400033

    Article  Google Scholar 

  48. Ningthoujam, D.S., Kshetri, P., Sanasam, S., and Nimaichand, S., World Appl. Sci. J. 2009, vol. 7, pp. 907–916.

    CAS  Google Scholar 

  49. Tsuchiya, K., Sakashita, H., Nakamura, Y., and Kimura, T., Agric. Biol. Chem., 1991, vol. 55, pp. 3125–3127. https://doi.org/10.1080/00021369.1991.10857204

    Article  CAS  Google Scholar 

  50. Ire, F.S., Okolo, B.N., Moneke, A.N., and Odibo, F.J.C., Afr. J. Food. Sci., 2011, vol. 5, pp. 353–365. https://doi.org/10.5897/AJFS.9000168

    Article  CAS  Google Scholar 

  51. Srinubabu, G., Lokeswari, N., and Jayaraju, K., J. Chem., 2007, vol. 4, pp. 208–215. https://doi.org/10.1155/2007/915432

    Article  CAS  Google Scholar 

  52. Banerjee, R. and Bhattacharyya, B.C., Biotechnol. Lett., 1992, vol. 14, pp. 301–304. https://doi.org/10.1007/BF01022328

    Article  CAS  Google Scholar 

  53. Fanin, N., Mooshammer, M., Sauvadet, M., Meng, C., Alvarez G., Bernard, L., et al., Funct. Ecol., 2022, vol. 36, pp.1378–1395. https://doi.org/10.1111/1365-2435.14027

    Article  CAS  Google Scholar 

  54. Baldrian, P., Šnajdr, J., Merhautová, V., Dobiášová, P., Cajthaml, T., and Valášková, V., Soil Biol. Biochem., 2013, vol. 56, pp. 60–68. https://doi.org/10.1016/j.soilbio.2012.01.020

    Article  CAS  Google Scholar 

  55. Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., et al., Soil Biol. Biochem., 2013, vol. 58, pp. 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  56. Jaskulak, M. and Grobelak, A., in Climate Change and Soil Interactions, Prasad, M.N.V., and Pietrzykowski, M., Eds., Elsevier, 2020, pp. 731–749.

    Google Scholar 

  57. Ellaiah, P., Srinivasulu, B., and Adinarayana, K., J. Sci. Ind. Res., 2002, vol. 61, pp. 690–704.

    CAS  Google Scholar 

  58. Zheng, M., Du, G., Guo, W., and Chen, J., Process Biochem., 2001, vol. 36, pp. 525–530. https://doi.org/10.1016/S0032-9592(00)00229-6

    Article  CAS  Google Scholar 

  59. Elias, M., Wieczorek, G., Rosenne, S., and Tawfik, D.S, Trends Biochem., 2014, vol. 39, pp. 1–7. https://doi.org/10.1016/j.tibs.2013.11.001

    Article  CAS  Google Scholar 

  60. Kumar, C.G. and Takagi, H., Biotechnol. Adv., 1999, vol. 17, pp. 561–594. https://doi.org/10.1016/s0734-9750(99)00027-0

    Article  CAS  PubMed  Google Scholar 

  61. Sharma, M., Gat Y., Arya, S., Kumar, V., Panghal, A., and Kumar, A., Ind. Biotechnol., 2019, vol. 15, pp. 69–78. https://doi.org/10.1089/ind.2018.0032

    Article  CAS  Google Scholar 

  62. Cheetham, P.S.J., in Applied Biocatalysis, Straathof, A.J.J. and Adlercreutz, P., Eds., Amsterdam: Harwood Scientific Publishers, 2000, pp. 93–152.

    Google Scholar 

  63. Kumar, C.G., Joo, H.S., Koo, Y.M., Paik, S.R., and Chang, C.S. World J. Microbiol. Biotechnol., 2004, vol. 20, pp. 351–357. https://doi.org/10.1023/B:WIBI.0000033057.28828.a7

    Article  CAS  Google Scholar 

  64. Sharma, K.M., Kumar, R., Panwar, S., and Kumar. A., J. Genet. Eng. Biotechnol., 2017, vol. 15, pp. 115–126. https://doi.org/10.1016/j.jgeb.2017.02.001

    Article  Google Scholar 

  65. Van Den Burg, B., Curr. Opin. Microbiol., 2003, vol. 6, pp. 213–218. https://doi.org/10.1016/s1369-5274(03)00060-2

    Article  CAS  PubMed  Google Scholar 

  66. Patel, R., Dodia, M., and Singh, S.P., Process Biochem., 2005, vol. 40, pp. 3569–3575. https://doi.org/10.1016/j.procbio.2005.03.049

    Article  CAS  Google Scholar 

  67. Patel, R.K., Dodia, M.S., Joshi, R.H., and Singh, S.P., World J. Microbiol. Biotechnol., 2006, vol. 22, pp. 375–382. https://doi.org/10.1007/s11274-005-9044-x

    Article  CAS  Google Scholar 

  68. Mrudula, S. and Nidhi Shyam., Braz. Arch. Biol. Technol., 2012, vol. 55, pp. 135–144. https://doi.org/10.1590/S1516-89132012000100017

    Article  CAS  Google Scholar 

  69. Matkawala, F., Nighojkar, S., Kumar, A., and Nighojkar, A., World J. Microbiol. Biotechnol., 2021, vol. 37, pp. 63. https://doi.org/10.1007/s11274-021-03036-z

    Article  CAS  PubMed  Google Scholar 

  70. Bhunia, B., Basak, B., and Dey, A., J. Biochem. Tech., 2012, vol. 3, pp. 448–457.

    CAS  Google Scholar 

  71. Carlile, M.J., Watkinson, S.C., and Goody, G.W., The Fungi, London: Academic, 2001.

    Google Scholar 

  72. Reddy, L.V.A., Wee, Y-J., Yun, J-S., and Ryu, H-W., Bioresour. Technol., 2008, vol. 99, pp. 2242–2249. https://doi.org/10.1016/j.biortech.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  73. Nilegaonkar, S.S., Zambare, V.P., Kanekar, P.P., Dhakephalkar, P.K., and Sarnaik, S.S., Bioresour. Technol., 2007, vol. 98, pp. 1238–1245. https://doi.org/10.1016/j.biortech.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  74. Nagalakshmi, R. and Ramesh, S., Recent Res. Sci. Technol., 2009, vol. 1, pp. 250–254.

    CAS  Google Scholar 

  75. Jayasree, D., Sandhya Kumari, T.D., Kavi Kishor, P.B., Lakshmi, M.V., and Narasu, M.L., Int. J. Res. Ind. Sci. Technol., 2009, vol. 1, pp. 79–82. https://doi.org/10.48550/arXiv.1002.0048

    Article  Google Scholar 

  76. Mabrouk, S.S., Hashem, A.M., El-Shayeb, N.M.A., Ismail, A.M.S., and Abdel-Fattah, A.F., Bioresour. Technol., 1999, vol. 69, pp. 155–159. https://doi.org/10.1016/S0960-8524(98)00165-5

    Article  CAS  Google Scholar 

  77. Bommasamudram, J. and Devappa, S., J. Microbiol. Biotech. Food Sci., 2017, vol. 7, pp. 174–180. https://doi.org/10.15414/jmbfs.2017.7.2.174-180

    Article  CAS  Google Scholar 

  78. Dodia, M.S., Joshi, R.H., Patel, R.K., and Singh, S.P., Braz. J. Microbiol., 2006, vol. 37, pp. 276–282. https://doi.org/10.1590/S1517-83822006000300015

    Article  CAS  Google Scholar 

  79. Ghobadi, N.Z., Yaghmaei, S., and Hosseini, H.R., Chem. Eng. Trans., 2010, vol. 21, pp. 1447–1452. https://doi.org/10.3303/CET1021242

    Article  Google Scholar 

  80. McKay, A.M., Milchwissenschaft, 1992, vol. 47, pp. 147–148.

    CAS  Google Scholar 

  81. Donaghy, J.A. and McKay, A.M., J. Appl. Bacteriol., 1993, vol. 74, pp. 662–666.

    Article  CAS  Google Scholar 

  82. Yang, J.K., Shih, I.L., Tzeng, Y.M., and Wang, S.L., Enzyme Microb. Technol., 2000, vol. 26, pp. 406–413. https://doi.org/10.1016/S0141-0229(99)00164-7

    Article  CAS  PubMed  Google Scholar 

  83. Phadatare, S.U., Deshpande, V.V., and Srinivasan, M.C., Enzyme Microb. Technol., 1993, vol. 15, pp. 72–76. https://doi.org/10.1016/0141-0229(93)90119-M

    Article  CAS  Google Scholar 

  84. Madzak, C., Treton, B., and Blanchin-Roland, S., J. Mol. Microbiol. Biotechnol., 2000, vol. 2, pp. 207–216.

    CAS  PubMed  Google Scholar 

  85. Andrade, V.S., Sarubbo, L.A., Fukushima, K., Miyaji, M., Nishimura, K., and Compos-Takaki, G.M.D., Braz. J. Microbiol., 2002, vol. 33, pp. 106–110. https://doi.org/10.1590/S1517-83822002000200002

    Article  CAS  Google Scholar 

  86. Gessesse, A., Hatti-Kaul, R., Gashe, B., and Mattiasson, B., Enzyme Microb. Technol., 2003, vol. 32, pp. 519–524. https://doi.org/10.1016/S0141-0229(02)00324-1

    Article  CAS  Google Scholar 

  87. Shafee, N., Aris, S.N., Rahman, R.N.Z.A., and Basri, M., J. Appl. Sci. Res., 2005, vol. 1, pp. 1–8.

    Google Scholar 

  88. Sharma, A.K., Sharma, V., Saxena, J., Yadav, B., Alam, A., and Prakash, A., Appl. Res. J., 2015, vol. 1, pp. 388–394.

    CAS  Google Scholar 

  89. El Enshasy, H., Abuoul-Enein, A., Helmy, S., and El Azaly Y., Aust. J. Basic Appl. Sci., 2008, vol. 2, pp. 583–593.

    CAS  Google Scholar 

  90. Benslimane, C., Lebrihi, A., Lounès, A., Lefebvre, G., and Germain, P., Enzyme Microb. Technol., 1995, vol. 11, pp. 1003–1013. https://doi.org/10.1016/0141-0229(95)00029-1

    Article  Google Scholar 

  91. Sen, S. and Satyanarayana, T., Indian J. Microbiol., 1993, vol. 33, pp. 43–47.

    Google Scholar 

  92. Kaur, S., Vohra, R.M., and Kapoor, M., World J. Microbiol. Biotechnol., 2001, vol. 17, pp. 125–129. https://doi.org/10.1023/A:1016637528648

    Article  CAS  Google Scholar 

  93. Mehta, V.J., Thumar, J.T., and Singh, S.P., Bioresour. Technol., 2006, vol. 97, pp. 1650–1654. https://doi.org/10.1016/j.biortech.2005.07.023

    Article  CAS  PubMed  Google Scholar 

  94. Chen, X.G., Stabnikova, O., and Tay, J.H., Extremophiles, 2004, vol. 8, pp. 489–498. https://doi.org/10.1007/s00792-004-0412-5

    Article  CAS  PubMed  Google Scholar 

  95. Aunstrup, K., in Economic Microbiology: Microbial Enzymes and Bioconversions, Rose, A.H., Ed., New York: Academic, 1980, pp. 50–114.

    Google Scholar 

  96. Mahajan, P.M., Nayak, S., and Lele, S.S., J. Biosci. Bioeng., 2012, vol. 113, pp. 307–314. https://doi.org/10.1016/j.jbiosc.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  97. Darani, K.K., Falahatpishe, H.R., and Jalali, M., Afr. J. Biotechnol., 2008, vol. 7, pp. 1536–1542. https://doi.org/10.5897/AJB07.885

    Article  Google Scholar 

  98. VijayAnand, S., Hemapriya, J., Selvin, J., and Kiran, S., Global J. Biotechnol. Biochem., 2010, vol. 5, pp. 44–49.

    CAS  Google Scholar 

  99. Chellapandi, P., J. Chem., 2010, vol. 7, pp. 479–482. https://doi.org/10.1155/2010/502583

    Article  CAS  Google Scholar 

  100. Srinivasan, T.R., Das, S., Balakrishnan, V., Philip, R., and Kannan, N., Rec. Res. Sci. Technol., 2009, vol. 1, pp. 063–066.

  101. Fujiwara, N. and Yamamoto, K., J. Ferment. Technol., 1987, vol. 65, pp. 345–348. https://doi.org/10.1016/0385-6380(87)90098-7

    Article  CAS  Google Scholar 

  102. Makino, K., Koshikawa, T., Nishihara, T., Ichikawa, T., and Kondo, M., Microbios, 1981, vol. 31, pp. 103–112.

    CAS  PubMed  Google Scholar 

  103. Abdel-Naby, M.A., Ismail, A.-M.S., Ahmed, S.A., and Fattah, A.F.A., Bioresour. Technol., 1998, vol. 64, pp. 205–210. https://doi.org/10.1016/S0960-8524(97)00160-0

    Article  CAS  Google Scholar 

  104. Tari, C., Genckal, H., and Tokatli, F., Process Biochem., 2006, vol. 41, pp. 659–665. https://doi.org/10.1016/j.procbio.2005.08.012

    Article  CAS  Google Scholar 

  105. Deshpande, V.V., Laxman, R.S., More, S. V., Rele, M.V., Rao, B.S.R., Jogdand V.V., et al., US Patent No. 6777219, 2004.

  106. McDonald, I.J. and Chambers, A., Canad. J. Microbiol., 1966, vol. 12, pp. 1175–1185. https://doi.org/10.1139/m66-159

    Article  CAS  Google Scholar 

  107. Voelker, F. and Altaba, S., Microbiol., 2001, vol. 147, pp. 2447–2459. https://doi.org/10.1099/00221287-147-9-2447

    Article  CAS  Google Scholar 

  108. Bascaran, V., Hardisson, C., and Brana, A.F., Appl. Microbiol. Biotechnol., 1990, vol. 34, pp. 208–213. https://doi.org/10.1007/BF00166782

    Article  CAS  Google Scholar 

  109. Martin, J.F., Adv. Biochem. Eng., 1977, vol. 6, pp. 105–127.

    CAS  Google Scholar 

  110. Yang, S.-S. and Lee, C.-M., World J. Microbiol. Biotechnol. 2001, vol. 17, pp. 403–410. https://doi.org/10.1023/A:1016759611127

    Article  CAS  Google Scholar 

  111. Ghorbel-Frikha, B., Sellami-Kamoun, A., Fakhfakh, N., Haddar, A., Manni, L., and Nasri, M., J. Ind. Microbiol. Biotechnol., 2005, vol. 32, pp. 186–194. https://doi.org/10.1007/s10295-005-0228-z

    Article  CAS  PubMed  Google Scholar 

  112. Fujiwara, N., Yamamoto, K., and Masui, A., J. Ferment. Bioeng., 1991, vol. 72, pp. 306–308. https://doi.org/10.1016/0922-338X(91)90170-L

    Article  CAS  Google Scholar 

  113. Moon, S.H. and Parulekar, S.J., Biotechnol. Bioeng., 1991, vol. 37, pp. 467–483. https://doi.org/10.1002/bit.260370509

    Article  CAS  PubMed  Google Scholar 

  114. Mao, W., Pan, R., and Freedman, D., J. Ind. Microbiol., 1992, vol. 11, pp. 1–6. https://doi.org/10.1007/BF01583724

    Article  CAS  Google Scholar 

  115. Hubner, U., Bock, U., and Schugerl, K., Appl. Microbiol. Biotechnol., 1993, vol. 40, pp. 182–188. https://doi.org/10.1007/Bf00170363

    Article  Google Scholar 

  116. Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., et al., Front. Bioeng. Biotechnol., 2019, vol. 7, 110. https://doi.org/10.3389/fbioe.2019.00110

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ullah, N., Rehman, M. U., Sarwar, A., Nadeem, M., Nelofer, R., Shakir, H.A., et al., Fermentation, 2022, vol. 8, pp. 628–640. https://doi.org/10.3390/fermentation8110628

    Article  CAS  Google Scholar 

  118. Tennalli, G.B., Garawadmath, S., Sequeira, L., Murudi, S., Patil, V., Divate, M.N., et al., J. App. Biol. Biotech., 2022, vol. 10, pp. 17–26. https://doi.org/10.7324/JABB.2022.100403

    Article  CAS  Google Scholar 

  119. Charles, P., Devanathan, V., Anbu, P., Ponnuswamy, M.N., Kalaichelvan P.T., and Hur, B-K., Basic. Microbiol., 2008, vol. 48, pp. 347–352. https://doi.org/10.1002/jobm.200800043

    Article  CAS  Google Scholar 

  120. Doan, C.T., Tran, T.N., Wen, I-H., Nguyen, V.B., Nguyen, A.D., and Wang, S.-L., Catalysts, 2019, vol. 9, pp. 798–811. https://doi.org/10.3390/catal9100798

    Article  CAS  Google Scholar 

  121. Wen, Y., Qiang, J., Zhou, G., Zhang, X., Wang, L., and Shi, Y., Front. Microbiol., 2022, vol. 13, p. 935072. https://doi.org/10.3389/fmicb.2022.935072

    Article  PubMed  PubMed Central  Google Scholar 

  122. Li, F., Yang, L., Lv, X., Liu, D., Xia, H., and Chen, S., Protein Expr. Purif., 2016, vol. 121, pp. 125–132. https://doi.org/10.1016/j.pep.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  123. Huang, Q., Peng, Y., Li, X., Wang, H., and Zhang, Y., Curr. Microbiol., 2003, vol. 46, pp. 0169–0173. https://doi.org/10.1007/s00284-002-3850-2

  124. Joshi, S. and Satyanarayana, T., Bioresour. Technol., 2013, vol. 131, pp. 76–85. https://doi.org/10.1016/j.biortech.2012.12.124

    Article  CAS  PubMed  Google Scholar 

  125. Kaur, I., Res. Rev. Biotechnol. Biosci., 2018, vol. 5, pp. 34–45. https://doi.org/10.6084/m9.figshare.8977316.v1

    Article  Google Scholar 

  126. Mane, M., Mahadik, K., and Kokare, C., Int. J. Pharm. Biol. Sci., 2013, vol. 4, pp. 572–582.

    CAS  Google Scholar 

  127. Femi-Ola, T.O., and Oladokun, D.O., Malaysian J. Microbiol., 2012, vol. 8, pp. 1–5. https://doi.org/10.21161/mjm.28310

    Article  CAS  Google Scholar 

  128. Waghmare, S.R., Gurav, A.A., Mali, S.A., Nadaf, N.H., Jadhav, D.B., and Sonawane, K.D., Protein Expr. Purif., 2015, vol. 107, pp. 1–6. https://doi.org/10.1016/j.pep.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  129. Benmrad, M.O., Moujehed, E., Elhoul, M.B., Mechri, S., Bejar, S., Zouari, R., et al., Int. J. Biol. Macromol., 2018, vol. 119, pp. 1002–1016. https://doi.org/10.1016/j.ijbiomac.2018.07.194

    Article  CAS  Google Scholar 

  130. Agrawal, D., Patidar, P., Banerjee, T., and Patil, S., Process Biochem., 2004, vol. 39, pp. 977–981. https://doi.org/10.1016/S0032-9592(03)00212-7

    Article  CAS  Google Scholar 

  131. Sedaghat, S., Yazdi, F.T., Mortazavi, A., and Shahidi, F., Int. Dairy J., 2022, vol. 129, p. 105335. https://doi.org/10.1016/j.idairyj.2022.105335

    Article  CAS  Google Scholar 

  132. Maal, K.B., Emtiazi, G., and Nahvi, I., Afr. J. Biotechnol., 2011, vol. 10, pp. 3894–3901. https://doi.org/10.5897/AJB10.774

    Article  Google Scholar 

  133. Fahmy, N.M. and El-Deeb., J. Genet. Eng. Biotechnol., 2023, vol. 21, pp. 48–63. https://doi.org/10.1186/s43141-023-00509-6

    Article  PubMed  PubMed Central  Google Scholar 

  134. Balachandran, C., Vishali, A., Arun Nagendran, N., Baskar, K., Hashem, A., and Abd Allah, E.F., Saudi J. Biol. Sci., 2021, vol. 28, pp. 4263–4269. https://doi.org/10.1016/j.sjbs.2021.04.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sidra, A., Ahmad, S., Sadia, S., and Rasool, S.A., Pak. J. Biol. Sci., 2006, vol. 9, pp. 2122–2126. https://doi.org/10.3923/pjbs.2006.2122.2126

    Article  Google Scholar 

  136. Sharma, S., Kumar, S., Kaur, R., and Kaur, R., Front. Microbiol., 2021, vol. 12, 722719. https://doi.org/10.3389/fmicb.2021.722719

    Article  PubMed  PubMed Central  Google Scholar 

  137. Moreira, K.A., Porto, T.S., Teixeira, M.F.S., Porto, A.L.F., and Filho, J.L.L., Process Biochem., 2003, vol. 39, pp. 67–72. https://doi.org/10.1016/S0032-9592(02)00312-6

    Article  CAS  Google Scholar 

  138. Abidi, F., Limam, F., and Nejib, M.M., Process Biochem., 2008, vol. 43, pp. 1202–1208. https://doi.org/10.1016/j.procbio.2008.06.018

    Article  CAS  Google Scholar 

  139. Agrawal, D., Patidar, P., Banerjee, T., and Patil, S., Process Biochem., 2005, vol. 40, pp. 1131–1136. https://doi.org/10.1016/j.procbio.2004.03.006

    Article  CAS  Google Scholar 

  140. Sjodahl, J., Emmer, A., Vincent, J., and Roeraade, J., Protein Exp. Puri., 2002, vol. 26, 153–161. https://doi.org/10.1016/s1046-5928(02)00519-3

    Article  CAS  Google Scholar 

  141. Nounou, M.I., Zaghloul, T.I., Ahmed, N.A., Eid, A.A., and El-Khordagui, L.K., Int. J. Pharm., 2017, vol. 529, pp. 423–432. https://doi.org/10.1016/j.ijpharm.2017.06.057

    Article  CAS  PubMed  Google Scholar 

  142. Thangam, B.E. and Rajkumar, S.G., Biotechnol. Appl. Biochem., 2002, vol. 35, pp. 149–154. https://doi.org/10.1042/ba20010013

    Article  CAS  PubMed  Google Scholar 

  143. Jany, K.D., Lederer, G., and Mayer, B., FEBS Lett., 1986, vol. 199, pp. 139–144. https://doi.org/10.1016/0014-5793(86)80467-7

    Article  CAS  Google Scholar 

  144. Anwar, A. and Saleemuddin, M., Biotechnol. Appl. Biochem., 2000, vol. 31, pp. 85–89. https://doi.org/10.1042/BA19990078

    Article  CAS  PubMed  Google Scholar 

  145. Pawar, R., Zambare, V., Barve, S., and Paratkar, G., Biotechnology, 2009, vol. 8, pp. 276–280. https://doi.org/10.3923/biotech.2009.276.280

    Article  CAS  Google Scholar 

  146. Ismail, K.S., Jadhav, A.A., Harale, M.A., and Gadre, M.T., Br. Biomed. Bull., 2014, vol. 2, pp. 293–302.

    Google Scholar 

  147. Greene, R.V., Griffin, H.L., and Cotta, M.A., Biotechnol. Lett., 1996, vol. 18, pp. 759–764. https://doi.org/10.1007/bf00127884

    Article  CAS  Google Scholar 

  148. Padmavathi, S., Chandrababu, N.K., Chitra, S., and Chandrakasan, G., J. Soc. Leath. Technol. Chem., 1995, vol. 79, pp. 88–90.

    CAS  Google Scholar 

  149. Dayanandan, A., Kanagaraj, J., Sounderraj, L., Govindaraju, R., and Rajkumar, G.S., J. Clean Prod., 2003, vol. 11, pp. 533–536. https://doi.org/10.1016/S0959-6526(02)00056-2

    Article  Google Scholar 

  150. Bhosale, S.H., Rao, M.B., Deshpande, V.V., and Srinivasan, M.C., Enzyme Microb. Technol., 1995, vol. 17, pp. 136–139. https://doi.org/10.1016/0141-0229(94)00045-S

    Article  CAS  Google Scholar 

  151. Horikoshi, K., Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp.735–750. https://doi.org/10.1128/mmbr.63.4.735-750.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Showell, M.S., in Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, Flickinger, M.C., and Drew, S.W.A., Eds., New York: John Wiley and Sons, 2002, vol. 2, pp. 958–971. https://doi.org/10.1002/0471250589.ebt079

  153. Mei, C. and Jiang, X., Process Biochem., 2005, vol. 40, pp. 2167–2172. https://doi.org/10.1016/j.procbio.2004.08.007

    Article  CAS  Google Scholar 

  154. Venugopal, M. and Saramma, A.V., Process Biochem., 2006, vol. 41, pp. 1239–1243. https://doi.org/10.1016/j.procbio.2005.12.025

    Article  CAS  Google Scholar 

  155. Arami, M., Rahimi, S., Mivehie, L., Mazaheri, F., and Mahmoodi, N.M., J. Appl. Polym. Sci., 2007, vol. 106, pp. 267–275. https://doi.org/10.1002/app.26492

    Article  CAS  Google Scholar 

  156. Moshen, F.N., Dileep, D., and Deepti, D., Electron. J. Biotechnol., 2005, vol. 8, pp. 197–203.

    Article  Google Scholar 

  157. Kanehisa, K., US Patent No. 6080689A, 2000.

  158. Romsomsa, N, Chim-anagae, P., and Jangchud, A., Sci. Asia, 2010, vol. 36, pp. 118–124. https://doi.org/10.2306/scienceasia1513-1874.2010.3-6.118

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author acknowledges the Palamuru University for the encouragement.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mrudula.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrudula, S. A Review on Microbial Alkaline Proteases: Optimization of Submerged Fermentative Production, Properties, and Industrial Applications. Appl Biochem Microbiol (2024). https://doi.org/10.1134/S0003683823602767

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0003683823602767

Keywords:

Navigation