Skip to main content
Log in

Optimization of culture conditions for the production of halothermophilic protease from halophilic bacterium Chromohalobacter sp. TVSP101

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arahal DR, Garcia MT, Ludwig W, Schleifer KH, Ventosa A (2001a) Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448

    CAS  Google Scholar 

  • Arahal DR, Garcia MT, Vargas C, Canovas D, Nieto JJ, Ventosa A (2001b) Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongate DSM 3043 and ATCC33174. Int J Syst Evol Microbiol 51:1457–1462

    CAS  Google Scholar 

  • Bagai R, Madamwar D (1997) Continuous production of halophilic α-amylase through whole cell immobilization of Halobacterium salinarium. Appl Biochem Biotechnol 62:213–218

    CAS  Google Scholar 

  • Beddow CG, Ardeshir AG (1979) The production of soluble fish protein solution for use in fish sauce manufacture. I. The use of added enzymes. J Food Technol 14:603–612

    Article  Google Scholar 

  • Bonete MJ, Pire C, Llorca FI, Camacho ML (1996) Glucose dehydrogenase from the Halophilic archaeon Haloferax mediterranei: enzyme purification, characterization and N–terminal sequence. FEBS Lett 383:227–229

    Article  CAS  Google Scholar 

  • Brock FM, Frosberg CW, Buchanan-Smith JG (1982) Proteolytic activity of rumen microorganisms and effect of proteinase inhibitors. Appl Environ Microbiol 44:561–569

    CAS  Google Scholar 

  • Cadenas Q, Engel PC (1994) Activity staining of halophilic enzymes: substitution of salt with a zwitterions in non-denaturing electrophoresis. Biochem Mol Biol Int 33:785–792

    CAS  Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol 117:307–312

    Article  Google Scholar 

  • Drucker H (1972) Regulation of exocellular proteases in Neurospora crassa: induction and repression of enzyme synthesis. J Bacteriol 110:1041–1049

    CAS  Google Scholar 

  • Ferrero MA, Castro GR, Abate CM, Baigori MD, Sineriz F (1996) Thermostable alkaline protease of Bacillus licheniformis MIR-29 isolation production and characterization. Appl Microbiol Biotechnol 45:327–332

    Article  CAS  Google Scholar 

  • Gildberge A (1989) Accelerated fish sauce fermentation by initial alkalification at low salt concentration. In Miyachi S, Karube I, Ishida Y (eds.), Current topics in marine biotechnology. Fuji Technol Press, Tokyo, pp101–104

    Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Izotova LS, Strongin AY, Chekulaeva LW, Sterkin VE, Ostoslavskaya VI, Lyublinskaya EA, Timokhina EA, Stepanov VM (1983) Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 155:826–830

    CAS  Google Scholar 

  • Joo HS, Kumar CG, Park GC, Paik SR, Chang CS (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J Appl Microbiol 95:267–272

    Article  CAS  Google Scholar 

  • Kamekura M, Seno Y, Holmes ML, Dyall-Smith ML (1992) Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. J Bacteriol 174:736–742

    CAS  Google Scholar 

  • Kamekura M, Seno Y, Dyall-Smith ML (1996) Halolysin R4, a serine proteinase from the halophilic archaeon Haloferax mediterranei; gene cloning, expression and structural studies. Biochimica Biophysica Acta 1294:159–167

    Google Scholar 

  • Kanlayakrit W, Preeyanuch B, Takuji O, Masatoshi G (2004) Production and characterization of protease from an extremely halophilic Halobacterium sp. PB407. Kasetsart J (Nat Sci) 38:15–20

    CAS  Google Scholar 

  • Kim J, Dordick JS (1997) Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol Bioeng 55:471–479

    Article  CAS  Google Scholar 

  • Lanyi JK (1974) Salt-dependant properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    CAS  Google Scholar 

  • Margesin R, Schiner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  Google Scholar 

  • Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238

    Article  Google Scholar 

  • Prado B, Lizama C, Aguilera M, Cormenzana AR, Fuentes S, Campos V, Monteoliva-Sanchez M (2006) Chromohalobacter nigrandesensis sp. nov., a moderately halophilic, Gram-negative bacterium isolated from lake Tebenquiche on the Atacama Saltern, Chile. Int J Syst Evol Microbiol 56:647–651

    Article  CAS  Google Scholar 

  • Quillaguaman J, Delgado O, Mattiasson B, Hatti-Kaul R (2004) Chromohalobacter sarecensis sp. nov., a psychrotolerant moderate halophile isolated from the saline Andean region of Bolivia. Int J Syst Evol Microbiol 54:1921–1926

    Article  CAS  Google Scholar 

  • Schiraldi C, Giuliano M, De Rosa M (2002) Perspectives on biotechnological applications of archaea. Archaea 1:75–86

    Article  CAS  Google Scholar 

  • Schmitt W, Rdest U, Goebel W (1990) Efficient high performance liquid chromatographic system for the purification of Halobacterial serine protease. J Chromatogr 521:211–220

    Article  CAS  Google Scholar 

  • Stepanov VM, Rudenskaya GN, Revina LP, Gryaznova YB, Lysogorskaya EN, Filippova IY, Ivanova I (1992) A serine proteinase of archae bacterium, Halobacterium mediterranei, A homologue of an eubacterial subtilisin. Biochem J 285:281–286

    CAS  Google Scholar 

  • Thongthai C, Suntinanalert P (1991) Halophiles in Thai fish sauce (nam pla). In: Rodriguez-Valera F (ed), General and applied aspects of halophilic microorganisms. Plenum Press, NewYork, pp381–388

    Google Scholar 

  • Van den Berg B (2003) Extremophiles as source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1988) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94

    Article  CAS  Google Scholar 

  • Vidyasagar M, Prakash S, Sreeramulu K (2006) Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101. Lett Appl Microbiol 43:385–391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K. Sreeramulu is thankful to the DST, New Delhi, India for the financial assistance and M. Vidyasagar is indebted to UGC-CSIR, New Delhi for JRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreeramulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidyasagar, M., Prakash, S., Jayalakshmi, S.K. et al. Optimization of culture conditions for the production of halothermophilic protease from halophilic bacterium Chromohalobacter sp. TVSP101. World J Microbiol Biotechnol 23, 655–662 (2007). https://doi.org/10.1007/s11274-006-9279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9279-1

Keywords

Navigation