Skip to main content
Log in

Optimization of the Anaerobic Production of Pyruvic Acid from Glucose by Recombinant Escherichia coli strains with Impaired Fermentation Ability via Enforced ATP Hydrolysis

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Anaerobic production of pyruvic acid from glucose by recombinant Escherichia coli strains with impaired fermentation ability during respiration with nitrate as an external terminal electron acceptor was studied. During nitrate respiration in a minimal salt medium lacking ammonium ions, the core E. coli strain MG1655 ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆ptsG, PLglk, PtacgalP, ∆frdAB, ∆pflB, ∆sdhAB, ∆aceEF converted glucose into pyruvic acid with a yield of 1.72 mol/mol, secreting lactic acid as the only detected byproduct. The deletion of the lldD and dld genes blocked the secretion of this byproduct. The corresponding strain lacking the respiratory L- and D-lactate dehydrogenases LldD and Dld synthesized pyruvic acid from glucose with a yield of 1.76 mol/mol, consuming the available carbohydrate substrate incompletely. Enforced ATP hydrolysis due to the action of the pyruvic acid–oxaloacetic acid–malic acid–pyruvic acid or pyruvic acid–phosphoenolpyruvate–pyruvic acid futile cycles led to a drastic increase in glucose consumption by recombinants while maintaining the levels of substrate to the target product conversion. As a result, during anaerobic nitrate respiration and enforced ATP hydrolysis pyruvic acid was produced from glucose with a yield of 1.77–1.78 mol/mol with almost exhaustive consumption of the substrate by recombinants and no or minimal byproduct formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W., and Preston, J.F., Appl. Environ. Microbiol., 1987, vol. 53, no. 10, pp. 2420–2425.

    Article  CAS  Google Scholar 

  2. Eram, M.S. and Ma, K., Biomolecules, 2013, vol. 3, no. 3, pp. 578–596.

    Article  Google Scholar 

  3. Reiße, S., Haack, M., Garbe, D., Sommer, B., Steffler, F., Carsten, J., Bohnen, F., Sieber, V., and Brück, T., Front. Bioeng. Biotechnol., 2016, vol. 4, no. 74. https://doi.org/10.3389/fbioe.2016.00074

  4. Li, Y., Chen, J., and Lun, S.Y., Appl. Microbiol. Biotechnol., 2001, vol. 57, no. 4, pp. 451–459.

    Article  CAS  Google Scholar 

  5. Park, H.S., Lee, J.Y., and Kim, H.S., Biotechnol. Bioeng., 1998, vol. 58, nos. 2–3, pp. 339–343.

    Article  CAS  Google Scholar 

  6. Zhang, Y., Tao, F., Du, M., Ma, C., Qiu, J., Gu, L., He, X., and Xu, P., Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 2, pp. 481–489.

    Article  CAS  Google Scholar 

  7. Saper, R.B., Eisenberg, D.M., and Phillips, R.S., Am. Fam. Physician, 2004, vol. 70, no. 9, pp. 1731–1738.

    PubMed  Google Scholar 

  8. Maleki, N. and Eiteman, M.A., Fermentation, 2017, vol. 3, no. 8. https://doi.org/10.3390/fermentation3010008

  9. Causey, T.B., Shanmugam, K.T., Yomano, L.P., and Ingram, L.O., Proc. Natl. Acad. Sci. U S A, 2004, vol. 101, no. 8, pp. 2235–2240.

    Article  CAS  Google Scholar 

  10. Koebmann, B.J., Westerhoff, H.V., Snoep, J.L., Nilsson, D., and Jensen, P.R., J. Bacteriol., 2002, vol. 184, no. 14, pp. 3909–3916.

    Article  CAS  Google Scholar 

  11. Vemuri, G.N., Altman, E., Sangurdekar, D.P., Khodursky, A.B., and Eiteman, M.A., Appl. Environ. Microbiol., 2006, vol. 72, no. 5, pp. 3653–3661.

    Article  CAS  Google Scholar 

  12. Fischer, C.R., Tseng, H.C., Tai, M., Prather, K.L., and Stephanopoulos, G., Appl. Microbiol. Biotechnol., 2010, vol. 88, no. 1, pp. 265–275. https://doi.org/10.1007/s00253-010-2749-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skorokhodova, A.Yu., Gulevich, A.Yu., and Debabov, V.G., Appl. Biochem. Microbiol., 2017, vol. 53, no. 3, pp. 304–309.

    Article  CAS  Google Scholar 

  14. Chen, G.Q., Microb. Cell. Fact., 2012, vol. 11, no. 111. https://doi.org/10.1186/1475-2859-11-111

  15. Carvalho, M., Matos, M., Roca, C., and Reis, M.A., N. Biotechnol., 2014, vol. 31, no. 1, pp. 133–139.

    Article  CAS  Google Scholar 

  16. Jung, H.M., Kim, Y.H., and Oh, M.K., Biotechnol. J., 2017, vol. 12, no. 11. https://doi.org/10.1002/biot.201700121

  17. Förster, A.H., Beblawy, S., Golitsch, F., and Gescher, J., Biotechnol. Biofuels, 2017, vol. 10, no. 65. https://doi.org/10.1186/s13068-017-0745-9

  18. Skorokhodova, A.Y., Gulevich, A.Y., and Debabov, V.G., J. Biotechnol., 2019, vol. 293, pp. 47–55.

    Article  CAS  Google Scholar 

  19. Unden, G. and Bongaerts, J., Biochim. Biophys. Acta, 1997, vol. 1320, no. 3, pp. 217–234.

    Article  CAS  Google Scholar 

  20. Skorokhodova, A.Yu., Sukhozhenko, A.V., Gulevich, A.Yu., and Debabov, V.G., Biotekhnologiiya, 2019, vol. 35, no. 2, pp. 16–24.

    Google Scholar 

  21. Morzhakova, A.A., Skorokhodova, A.Yu., Gulevich, A.Yu., and Debabov, V.G., Appl. Biochem. Microbiol., 2013, vol. 49, no. 2, pp. 113–119.

    Article  CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  23. Datsenko, K.A. and Wanner, B.L., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 12, pp. 6640–6645.

    Article  CAS  Google Scholar 

  24. Katashkina, Zh.I., Skorokhodova, A.Yu., Zimenkov, D.V., Gulevich, A.Yu., Minaeva, N.I., Doroshenko, V.G., Biryukova, I.V., and Mashko, S.V., Mol. Biol. (Moscow), 2005, vol. 39, no. 5, pp. 823–831.

    Article  Google Scholar 

  25. Gulevich, A.Yu., Skorokhodova, A.Yu., Ermishev, V.Yu., Krylov, A.A., Minaeva, N.I., Polonskaya, Z.M., Zimenkov, D.V., Biryukova, I.V., and Mashko, S.V., Mol. Biol. (Moscow), 2009, vol. 43, no. 3, pp. 547–557.

    Article  Google Scholar 

  26. Maklashina, E., Berthold, D.A., and Cecchini, G., J. Bacteriol., 1998, vol. 180, no. 22, pp. 5989–5996.

    Article  CAS  Google Scholar 

  27. Nishimura, Y., Tan, I.K.P., Ohgami, Y., Kohgami, K., and Kamihara, T., FEMS Microbiol. Lett., 1983, vol. 17, nos. 1–3, pp. 283–286.

    CAS  Google Scholar 

  28. Zhu, Y., Eiteman, M.A., Altman, R., and Altman, E., Appl. Environ. Microbiol., 2008, vol. 74, no. 21, pp. 6649–6655.

    Article  CAS  Google Scholar 

  29. Hädicke, O. and Klamt, S., Biochem. Soc. Trans., 2015, vol. 43, no. 6, pp. 1140–1145.

    Article  Google Scholar 

  30. Skorokhodova, A.Yu., Stasenko, A.A., Gulevich, A.Yu., and Debabov, V.G., Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 141–148.

    Article  CAS  Google Scholar 

  31. Skorokhodova, A.Yu., Gulevich, A.Yu., and Debabov, V.G., Biotekhnologiya, 2018, vol. 34, no. 2, pp. 18–25.

    Article  Google Scholar 

  32. Hadicke, O., Bettenbrock, K., and Klamt, S., Biotechnol. Bioeng., 2015, vol. 112, no. 10, pp. 2195–2199.

    Article  Google Scholar 

  33. Skorokhodova, A.Yu., Gulevich, A.Yu., Morzhakova, A.A., Shakulov, R.S., and Debabov, V.G., Appl. Biochem. Microbiol., 2011, vol. 47, no. 4, pp. 373–380.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by a grant from the Russian Foundation for Basic Research (project no. 18-04-01222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Skorokhodova.

Ethics declarations

No experimentation involving animals or human was performed by any of the authors.

Conflict of Interest. The authors have no conflicts of interest.

Additional information

Translated by E. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorokhodova, A.Y., Gulevich, A.Y. & Debabov, V.G. Optimization of the Anaerobic Production of Pyruvic Acid from Glucose by Recombinant Escherichia coli strains with Impaired Fermentation Ability via Enforced ATP Hydrolysis. Appl Biochem Microbiol 57, 434–442 (2021). https://doi.org/10.1134/S0003683821040153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821040153

Keywords:

Navigation