Skip to main content
Log in

Optimization of Aerobic Synthesis of Succinic Acid from Glucose by Recombinant Escherichia coli Strains through the Tricarboxylic Acid Cycle Variant Mediated by the Action of 2-Ketoglutarate Decarboxylase

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The biosynthesis of succinic acid from glucose by the previously engineered E. coli strain SUC1.0 (pMW119-kgd) (MG1655 ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆ptsG, PLglk, PtacgalP, ∆aceBAK, ∆glcB, ∆sdhAB, pMW119-kgd) was optimized. The yield of the target substance was increased, upon the activation in the strain of the tricarboxylic acid cycle variant mediated by the action of heterologous 2-ketoglutarate decarboxylase, due to the intensification of the anaplerotic formation of oxaloacetic acid. Inactivation of the nonspecific thioesterase YciA in the strain did not considerably change the biosynthetic characteristics of the producer. The enhancement of the expression of native phosphoenolpyruvate carboxylase led to an increase in the yield of the target compound by the recombinant synthesizing succinic acid via the reactions of the native tricarboxylic acid cycle from 25 to 42%, and from 67 to 75% upon the induced expression of Mycobacterium tuberculosis 2-ketoglutarate decarboxylase. The expression of the Bacillus subtilis pyruvate carboxylase gene in the strain resulted in an increase in the yield of succinic acid up to 84%. While functioning in whole-cell biocatalyst mode, the engineered strain SUC1.0 PL-pycA (pMW119-kgd) demonstrated a substrate-to-target product conversion ratio reaching 93%, approaching the corresponding theoretical maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Mazzoli, R., Fermentation, 2021, vol. 7, no. 4, p. 248. https://doi.org/10.3390/fermentation7040248

    Article  CAS  Google Scholar 

  2. Escanciano, I.A., Wojtusik, M., Esteban, J., Ladero, M., and Santos, V.E., Fermentation, 2022, vol. 8, no. 8, p. 368. https://doi.org/10.3390/fermentation8080368

    Article  CAS  Google Scholar 

  3. Guettler, M.V., Rumler, D., and Jain, M.K., Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 207–216.

    Article  PubMed  CAS  Google Scholar 

  4. Nghiem, N.P., Davison, B.H., Suttle, B.E., and Richardson, G.R., Appl. Biochem. Biotechnol., 1997, vol. 63–65, pp. 565–576.

    Article  PubMed  Google Scholar 

  5. Lee, P.C., Lee, S.Y., Hong, S.H., and Chang, H.N., Appl. Microbiol. Biotechnol., 2002, vol. 58, no. 5, pp. 663–668.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, X., Zhao, G., Sun, S., Fan, C., Feng, X.M., and Xiong, P., Front. Bioeng. Biotechnol., 2022, vol. 10, p. 3389. https://doi.org/10.3389/fbioe.2022.843887

    Article  Google Scholar 

  7. Skorokhodova, A.Yu., Gulevich, A.Yu., Morzhakova, A.A., Shakulov, R.S., and Debabov, V.G., Biotekhnologiya, 2012, no. 2, pp. 8–20.

  8. Skorokhodova, A.Y., Morzhakova, A.A., Gulevich, A.Y., and Debabov, V.G., J. Biotechnol., 2015, vol. 214, pp. 33–42.

    Article  PubMed  CAS  Google Scholar 

  9. Lin, H., Bennett, G.N., and San, K.Y., Metab. Eng., 2005, vol. 7, no. 2, pp. 116–127.

    Article  PubMed  CAS  Google Scholar 

  10. Park, S.J., Chao, G., and Gunsalus, R.P., J. Bacteriol., 1997, vol. 179, no. 13, pp. 4138–4142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Skorokhodova, A.Yu., Stasenko, A.A., Gulevich, A.Yu., and Debabov, V.G., App. Biochem. Microbiol., 2018, vol. 54, no. 3, pp. 245–251. https://doi.org/10.1134/S0003683818030134

    Article  CAS  Google Scholar 

  12. Skorokhodova, A.Y., Gulevich, A.Y., and Debabov, V.G., Biotechnol. Rep., 2022, vol. 33, p. e00703. https://doi.org/10.1016/j.btre.2022.e00703

    Article  CAS  Google Scholar 

  13. Skorokhodova, A.Y., Stasenko, A.A., Krasilnikova, N.V., Gulevich, A.Y., and Debabov, V.G., Fermentation, 2022, vol. 8, no. 12, p. 738. https://doi.org/10.3390/fermentation8120738

    Article  CAS  Google Scholar 

  14. Tian, J., Bryk, R., Itoh, M., Suematsu, M., and Nathan, C., Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 30, pp. 10670–10675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhang, S. and Bryant, D.A., Science, 2011, vol. 334, no. 6062, pp. 1551–1553.

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 1989, 2nd ed.

    Google Scholar 

  17. Datsenko, K.A. and Wanner, B.L., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 12, pp. 6640–6645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Katashkina, Zh.I., Skorokhodova, A.Yu., Zimenkov, D.V., Gulevich, A.Yu., Minaeva, N.I., Doroshenko, V.G., Biryukova, I.V., and Mashko, S.V., Mol. Biol. (Moscow), 2005, vol. 39, no. 5, pp. 719–726.

    Article  CAS  Google Scholar 

  19. Gulevich, A.Yu., Skorokhodova, A.Yu., and Debabov, V.G., App. Biochem. Microbiol., 2021, vol. 57, no. 2, pp. 161–169.

    Article  CAS  Google Scholar 

  20. Gulevich, A.Yu., Skorokhodova, A.Yu., Ermishev, V.Yu., Krylov, A.A., Minaeva, N.I., Polonskaya, Z.M., Zimenkov, D.V., Biryukova, I.V., and Mashko, S.V., Mol. Biol. (Moscow), 2009, vol. 43, no. 3, pp. 505–514.

    Article  CAS  Google Scholar 

  21. Gulevich, A.Yu., Skonechnyi, M.S., Sukhozhenko, A.V., Skorokhodova, A.Yu., and Debabov, V.G., Biotekhnologiya, 2015, no. 2, pp. 46–54.

  22. Clomburg, J.M., Vick, J.E., Blankschien, M.D., Rodriguez-Moya, M., and Gonzalez, R., ACS Synth. Biol., 2012, vol. 1, pp. 541–554.

    Article  PubMed  CAS  Google Scholar 

  23. Jitrapakdee, S., St. Maurice, M., Rayment, I., Cleland, W.W., Wallace, J.C., and Attwood, P.V., Biochem. J., 2008, vol. 413, no. 3, pp. 369–387.

    Article  PubMed  CAS  Google Scholar 

  24. Skorokhodova, A.Yu., Gulevich, A.Yu., and Debabov, V.G., Biotekhnologiya, 2018, vol. 34, no. 2, pp. 18–25.

    Article  Google Scholar 

  25. Chang, D.E., Shin, S., Rhee, J.S., and Pan, J.G., J. Bacteriol., 1999, vol. 181, no. 21, pp. 6656–6663.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Burgard, A., Burk, M.J., Osterhout, R., Van Dien, S., and Yim, H., Curr. Opin. Biotechnol., 2016, vol. 42, pp. 118–125.

    Article  PubMed  CAS  Google Scholar 

  27. Seol, W. and Shatkin, A.J., J. Biol. Chem., 1992, vol. 267, no. 9, pp. 6409–6413.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Skorokhodova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by V. Mittova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorokhodova, A.Y., Gulevich, A.Y. & Debabov, V.G. Optimization of Aerobic Synthesis of Succinic Acid from Glucose by Recombinant Escherichia coli Strains through the Tricarboxylic Acid Cycle Variant Mediated by the Action of 2-Ketoglutarate Decarboxylase. Appl Biochem Microbiol 59, 786–792 (2023). https://doi.org/10.1134/S0003683823060169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823060169

Keywords:

Navigation