Skip to main content
Log in

Effect of Anaplerotic Pathways Activation on CO2-dependent Anaerobic Glucose Utilization by Escherichia coli Strains Deficient in the Main Pathways of Mixed Acid Fermentation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of anaplerotic pathways activation on CO2-dependent anaerobic glucose utilization by Escherichia coli strains deficient in the main fermentation pathways and possessing a modified system of glucose transport and phosphorylation was studied. Intracellular CO2 generation in the strains was ensured resulting from oxidative decarboxylation of pyruvic acid by pyruvate dehydrogenase. Sodium bicarbonate dissolved in the medium was used as an external source of CO2. The genes of heterologous pyruvate carboxylase and native NADH-dependent malic enzyme were overexpressed in the strains to allow anaplerotic carboxylation of pyruvic acid to oxaloacetic or malic acid. The ability of the strains to reoxidize NADH utilizing carboxylation products was additionally increased due to enhanced expression of malate dehydrogenase gene. In the case of endogenous CO2 formation, the activation of anaplerotic pathways did not cause a notable increase in the anaerobic glucose consumption by the constructed strains. At the same time, the expression of pyruvate carboxylase led to a pronounced decrease in the secretion of pyruvic acid with the concomitant increase in the yield of four-carbon metabolites. Further enhancement of NADH-dependent malic enzyme expression provoked activation of a pyruvate–oxaloacetate–malate–pyruvate futile cycle in the strains. The availability in the medium of the external CO2 source sharply increased the anaerobic utilization of glucose by strains expressing pyruvate carboxylase. The activity of the futile cycle has raised with the increased malic enzyme expression and dropped upon enhancement of malate dehydrogenase expression. As a result, the efficiency of CO2-dependent anaerobic glucose utilization coupled to the formation of four-carbon carboxylation products increased in the studied strains resulting from the primary anaplerotic conversion of pyruvic acid into oxaloacetic acid followed by the involvement of the precursor formed in NADH-consuming biosynthetic reactions dominating over the reactions of the revealed futile cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, J. and Wittmann, C., Curr. Opin. Biotechnol., 2016, vol. 42, pp. 178–188.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, X., Zhou, L., Tian, K., Kumar, A., Singh, S., Prior, B.A., and Wang, Z., Biotechnol. Adv., 2013, vol. 31, no. 8, pp. 1200–1223.

    Article  CAS  PubMed  Google Scholar 

  3. Sauer, U. and Eikmanns, B.J., FEMS Microbiol. Rev., 2005, vol. 29, no. 4, pp. 765–794.

    Article  CAS  PubMed  Google Scholar 

  4. Förster, A.H. and Gescher, J., Front. Bioeng. Biotechnol., 2014, vol. 2. doi 10.3389/fbioe.2014.00016

  5. Matsumoto, T., Tanaka, T., and Kondo, A., Bioresour. Technol, 2017. doi 10.1016/j.biortech.2017.05.008

    Google Scholar 

  6. Fischer, C.R., Tseng, H.C., Tai, M., Prather, K.L., and Stephanopoulos, G., Appl. Microbiol. Biotechnol., 2010, vol. 88, no. 1, pp. 265–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gulevich, A.Yu., Skorokhodova, A.Yu., Morzhakova, A.A., Antonova, S.V., Sukhozhenko, A.V., Shakulov, R.S., and Debabov, V.G., Appl. Biochem. Microbiol., 2012, vol. 48, no. 4, pp. 344–349.

    Article  CAS  Google Scholar 

  8. Skorokhodova, A.Yu., Gulevich, A.Yu., and Debabov, V.G., Appl. Biochem. Microbiol., 2017, vol. 53, no. 3, pp. 304–309.

    Article  CAS  Google Scholar 

  9. Kern, A., Tilley, E., Hunter, I.S., Legisa, M., and Glieder, A., J. Biotechnol., 2007, vol. 129, no. 1, pp. 6–29.

    Article  CAS  PubMed  Google Scholar 

  10. Gosset, G., Microb. Cell. Fact., 2005, vol. 4, no. 1. doi 10.1186/1475-2859-4-14

    Google Scholar 

  11. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  12. Datsenko, K.A. and Wanner, B.L., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 12, pp. P. 6640–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katashkina, Zh.I., Skorokhodova, A.Yu., Zimenkov, D.V., Gulevich, A.Yu., Minaeva, N.I., Doroshenko, V.G., Biryukova, I.V., and Mashko, S.V., Mol. Biol., 2005, vol. 39, no. 5, pp. 823–831.

    Article  Google Scholar 

  14. Gulevich, A.Yu., Skorokhodova, A.Yu., Ermishev, V.Yu., Krylov, A.A., Minaeva, N.I., Polonskaya, Z.M., Zimenkov, D.V., Biryukova, I.V., and Mashko, S.V., Mol. Biol., 2009, vol. 43, no. 3, pp. 547–557.

    Article  Google Scholar 

  15. Skorokhodova, A.Yu., Gulevich, A.Yu., Morzhakova, A.A., Shakulov, R.S., and Debabov, V.G., Appl. Biochem. Microbiol., 2011, vol. 47, no. 4, pp. 415–423.

    Article  Google Scholar 

  16. Murarka, A., Clomburg, J.M., Moran, S., Shanks, J.V., and Gonzalez, R., J. Biol. Chem., 2010, vol. 285, no. 41, pp. 31548–31558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bologna, F.P., Andreo, C.S., and Drincovich, M.F., J. Bacteriol., 2007, vol. 189, no. 16, pp. 5937–5946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stols, L. and Donnelly, M.I., Appl. Environ. Microbiol., 1997, vol. 63, no. 7, pp. 2695–2701.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Y., Li, M., Zhang, X., Yang, P., Liang, Q., and Qi, Q., Bioresour. Technol., 2013, vol. 149, pp. 333–340.

    Article  CAS  PubMed  Google Scholar 

  20. Hoefel, T., Faust, G., Reinecke, L., Rudinger, N., and Weuster-Botz, D., Biotechnol. J., 2012, vol. 7, no. 10, pp. 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  21. Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A., and Ingram, L.O., Biotechnol. Bioeng., 2008, vol. 101, no. 5 P, pp. 881–893.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X., Wang, X., Shanmugam, K.T., and Ingram, L.O., Appl. Environ. Microbiol., 2011, vol. 77, no. 2, pp. 427–434.

    Article  CAS  PubMed  Google Scholar 

  23. Kwon, Y.D., Kwon, O.H., Lee, H.S., and Kim, P., J. Appl. Microbiol., 2007, vol. 103, no. 6, pp. 2340–2345.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Skorokhodova.

Additional information

Original Russian Text © A.Yu. Skorokhodova, A.A. Stasenko, A.Yu. Gulevich, V.G. Debabov, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 2, pp. 149–157.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorokhodova, A.Y., Stasenko, A.A., Gulevich, A.Y. et al. Effect of Anaplerotic Pathways Activation on CO2-dependent Anaerobic Glucose Utilization by Escherichia coli Strains Deficient in the Main Pathways of Mixed Acid Fermentation. Appl Biochem Microbiol 54, 141–148 (2018). https://doi.org/10.1134/S0003683818020102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818020102

Keywords

Navigation