Skip to main content

Advertisement

Log in

Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are non-mobile, gram-positive, non-spore-forming, micro-aerophilic microorganisms widely explored as starter cultures food industry to enhance the gustatory, nutritional value, imparts appetizing flavour, texture to milk, vegetative, meat foods and prolongs their shelf life. This vast review emphasis various LABs widely explored in the food industry. Herein, we have summarized the classification of LAB strains, their metabolic pathways for biosynthesis of lactic acid, ethanol, acetic acid and demonstrated their application in various food industries for making fermented milk (yoghurt), cheese, beverages, bread, and animal foods. The wide spectrum of LAB-based probiotics, bacteriocins, exopolysaccharides, bio preservative and their relevant benefits towards human health has also been discussed. Moreover, LAB bacteriocins and probiotics in food application may limit the growth of pathogenic, while boosting health immunity. Microbial exopolysaccharides have interesting characteristics for the fermented food industry as new functional foods. Later on, we have discussed the various advancement in metabolic engineering, synthetic biology tools, which have gained considerable interest to elucidate the biosynthetic pathway for tailoring cellular metabolism for high activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Asgher M, Qamar SA, Bilal M, Iqbal HMN. Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int. 2020;137: 109625. https://doi.org/10.1016/j.foodres.2020.109625.

    Article  CAS  PubMed  Google Scholar 

  2. Das D, Goyal A. Lactic acid bacteria in food industry. In: Satyanarayana T, Johri BN, editors. Microorganisms in sustainable agriculture and biotechnology. Dordrecht: Springer; 2012. pp. 757–72. https://doi.org/10.1007/978-94-007-2214-9_33

  3. Daba GM, Elkhateeb WA. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: current applications and future prospects. Biocatal Agric Biotechnol. 2020;28: 101750. https://doi.org/10.1016/j.bcab.2020.101750.

    Article  Google Scholar 

  4. Abiru Y, Ueno T, Uchiyama S. Isolation and characterization of novel S-equol-producing bacteria from brines of stinky tofu, a traditional fermented soy food in Taiwan. Int J Food Sci Nutr. 2013;64:936–43. https://doi.org/10.3109/09637486.2013.816936.

    Article  CAS  PubMed  Google Scholar 

  5. Angelin J, Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol. 2020;162:853–65. https://doi.org/10.1016/j.ijbiomac.2020.06.190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang X, Liu X, Xu H, Sun Y, Zhang Y, Wang Y. Improvement of the nutritional, antioxidant and bioavailability properties of corn gluten-wheat bran mixture fermented with lactic acid bacteria and acid protease. LWT. 2021;144: 111161. https://doi.org/10.1016/j.lwt.2021.111161.

    Article  CAS  Google Scholar 

  7. Di Cagno R, Coda R, De Angelis M, Gobbetti M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013;33:1–10. https://doi.org/10.1016/j.fm.2012.09.003.

    Article  CAS  PubMed  Google Scholar 

  8. Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules. 2017;22:1255. https://doi.org/10.3390/molecules22081255.

    Article  CAS  PubMed Central  Google Scholar 

  9. Pasteur L. Mémoire sur la fermentation appelée lactique (Extrait par l’auteur). Mol Med 1. 1995;599–601. https://doi.org/10.1007/BF03401599

  10. Richardson R. Inflammation, suppuration, putrefaction, fermentation: Joseph Lister’s microbiology. Notes Records R Soc. 2013;67:211–29. https://doi.org/10.1098/rsnr.2013.0034.

    Article  Google Scholar 

  11. Ye JH, Huang LY, Terefe NS, Augustin MA. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chem. 2019;286:616–23. https://doi.org/10.1016/j.foodchem.2019.02.030.

    Article  CAS  PubMed  Google Scholar 

  12. Meade E, Slattery MA, Garvey M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics (Basel, Switz). 2020;9:32. https://doi.org/10.3390/antibiotics9010032.

    Article  CAS  Google Scholar 

  13. Darbandi A, Asadi A, Ghanavati R, Afifirad R, Darb-Emamie A, Kakanj M, et al. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: systemic review 2010–20. Int J Infect Dis. 2021;105:91–104. https://doi.org/10.1016/j.ijid.2021.02.011.

  14. Di Renzo L, Merra G, Esposito E, De Lorenzo A. Are probiotics effective adjuvant therapeutic choice in patients with COVID-19? Eur Rev Med Pharmacol Sci. 2020;24:4062–3. https://doi.org/10.26355/eurrev_202004_20977.

  15. Singh K, Rao A. Probiotics: a potential immunomodulator in COVID-19 infection management. Nutr Res. 2021;87:1–12. https://doi.org/10.1016/j.nutres.2020.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moradi M, Molaei R, Guimarães JT. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme Microb Technol. 2021;143: 109722. https://doi.org/10.1016/j.enzmictec.2020.109722.

    Article  CAS  PubMed  Google Scholar 

  17. Korcz E, Varga L. Exopolysaccharides from lactic acid bacteria: techno-functional application in the food industry. Trends Food Sci Technol. 2021;110:375–84. https://doi.org/10.1016/j.tifs.2021.02.014.

    Article  CAS  Google Scholar 

  18. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, et al. Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res. 2018;25:7287–98. https://doi.org/10.1007/s11356-018-1234-9.

    Article  CAS  Google Scholar 

  19. Abdel-Rahman MA, Tashiro Y, Zendo T, Sonomoto K. Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Adv. 2013;3:8437–45. https://doi.org/10.1039/C3RA00078H.

    Article  CAS  Google Scholar 

  20. Zielińska D, Kolożyn-Krajewska D. Food-origin lactic acid bacteria may exhibit probiotic properties: review. Biomed Res Int. 2018;2018:5063185. https://doi.org/10.1155/2018/5063185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Z-Y, Hsieh Y-M, Huang C-C, Tsai C-C. Inhibitory effects of probiotic lactobacillus on the growth of human colonic carcinoma cell line HT-29. Molecules. 2017;22:107. https://doi.org/10.3390/molecules22010107.

    Article  CAS  PubMed Central  Google Scholar 

  22. Baldwin C, Millette M, Oth D, Ruiz MT, Luquet F-M, Lacroix M. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer. 2010;62:371–8. https://doi.org/10.1080/01635580903407197.

  23. Medic J, Atkinson C, Hurburgh CR Jr. Current knowledge in soybean composition. J Am Oil Chem Soc. 2014;91:363–84. https://doi.org/10.1007/s11746-013-2407-9.

    Article  CAS  Google Scholar 

  24. Riciputi Y, Serrazanetti DI, Verardo V, Vannini L, Caboni MF, Lanciotti R. Effect of fermentation on the content of bioactive compounds in tofu-type products. J Funct Foods. 2016;27:131–9. https://doi.org/10.1016/j.jff.2016.08.041.

    Article  CAS  Google Scholar 

  25. Peng K, Koubaa M, Bals O, Vorobiev E. Recent insights in the impact of emerging technologies on lactic acid bacteria: a review. Food Res Int. 2020;137: 109544. https://doi.org/10.1016/j.foodres.2020.109544.

    Article  CAS  PubMed  Google Scholar 

  26. Nuraida L. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci Hum Well. 2015;4:47–55. https://doi.org/10.1016/j.fshw.2015.06.001.

    Article  Google Scholar 

  27. Hofvendahl K, Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol. 2000;26:87–107. https://doi.org/10.1016/S0141-0229(99)00155-6.

    Article  CAS  PubMed  Google Scholar 

  28. Basso TO, Gomes FS, Lopes ML, de Amorim HV, Eggleston G, Basso LC. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek. 2014;105:169–77. https://doi.org/10.1007/s10482-013-0063-6.

    Article  CAS  PubMed  Google Scholar 

  29. Bergqvist SW, Sandberg AS, Carlsson NG, Andlid T. Improved iron solubility in carrot juice fermented by homo- and hetero-fermentative lactic acid bacteria. Food Microbiol. 2005;22:53–61. https://doi.org/10.1016/j.fm.2004.04.006.

    Article  CAS  Google Scholar 

  30. Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv. 2014;32:1216–36. https://doi.org/10.1016/j.biotechadv.2014.07.005.

    Article  CAS  PubMed  Google Scholar 

  31. Mundt JO, Hammer JL. Lactobacilli on plants. ApMic. 1968;16:1326–30. https://doi.org/10.1128/aem.16.9.1326-1330.1968.

    Article  CAS  Google Scholar 

  32. Notararigo S, Nácher-Vázquez M, Ibarburu I, Werning ML, de Palencia PF, Dueñas MT, et al. Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohydr Polym. 2013;93:57–64. https://doi.org/10.1016/j.carbpol.2012.05.016.

    Article  CAS  PubMed  Google Scholar 

  33. Lübeck M, Lübeck PS. Application of lactic acid bacteria in green biorefineries. FEMS Microbiol Lett. 2019;2019:366. https://doi.org/10.1093/femsle/fnz024.

  34. Singhvi M, Zendo T, Sonomoto K. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects. Appl Microbiol Biotechnol. 2018;102:5911–24. https://doi.org/10.1007/s00253-018-9092-4.

    Article  CAS  PubMed  Google Scholar 

  35. Pohanka M. D-lactic acid as a metabolite: toxicology, diagnosis, and detection. BioMed Res Int. 2020;2020:3419034. https://doi.org/10.1155/2020/3419034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dey P, Pal P. Direct production of l (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. J Membr Sci. 2012;389:355–62. https://doi.org/10.1016/j.memsci.2011.10.051.

    Article  CAS  Google Scholar 

  37. Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol. 2011;156:286–301. https://doi.org/10.1016/j.jbiotec.2011.06.017.

    Article  CAS  PubMed  Google Scholar 

  38. Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv. 2013;31:877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  39. Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol. 2009;75:5175–8. https://doi.org/10.1128/AEM.00573-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia A-N, Meng X-S, Tang X-J, Zhang Y-Z, Lei S-M, Liu Y-G. Probiotic and related properties of a novel lactic acid bacteria strain isolated from fermented rose jam. LWT. 2021;136: 110327. https://doi.org/10.1016/j.lwt.2020.110327.

    Article  CAS  Google Scholar 

  41. Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK. Lactic acid bacteria in finfish—an update. Front Microbiol. 2018;2018:9. https://doi.org/10.3389/fmicb.2018.01818.

  42. Vijayalakshmi S, Adeyemi DE, Choi IY, Sultan G, Madar IH, Park M-K. Comprehensive in silico analysis of lactic acid bacteria for the selection of desirable probiotics. LWT. 2020;130: 109617. https://doi.org/10.1016/j.lwt.2020.109617.

    Article  CAS  Google Scholar 

  43. Lakshmi B, Viswanath B, Sai Gopal DVR. Probiotics as antiviral agents in shrimp aquaculture. J Pathogens. 2013;2013: 424123. https://doi.org/10.1155/2013/424123.

    Article  Google Scholar 

  44. Jin Y, Luo B, Cai J, Yang B, Zhang Y, Tian F, et al. Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. J Dairy Sci. 2021. https://doi.org/10.3168/jds.2020-19398.

    Article  PubMed  Google Scholar 

  45. Mohamad N, Manan H, Sallehhuddin M, Musa N, Ikhwanuddin M. Screening of lactic acid bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) as potential probiotics. Aquacult Rep. 2020;18: 100523. https://doi.org/10.1016/j.aqrep.2020.100523.

    Article  Google Scholar 

  46. Kadyan S, Rashmi HM, Pradhan D, Kumari A, Chaudhari A, Deshwal GK. Effect of lactic acid bacteria and yeast fermentation on antimicrobial, antioxidative and metabolomic profile of naturally carbonated probiotic whey drink. LWT. 2021;142: 111059. https://doi.org/10.1016/j.lwt.2021.111059.

    Article  CAS  Google Scholar 

  47. Sharma A, Lavania M, Singh R, Lal B. Identification and probiotic potential of lactic acid bacteria from camel milk. Saudi J Biol Sci. 2021;28:1622–32. https://doi.org/10.1016/j.sjbs.2020.11.062.

    Article  CAS  PubMed  Google Scholar 

  48. Pachla A, Ptaszyńska AA, Wicha M, Kunat M, Wydrych J, Oleńska E, et al. Insight into probiotic properties of lactic acid bacterial endosymbionts of Apis mellifera L. derived from the Polish apiary. Saudi J Biol Sci. 2021;28:1890–9. https://doi.org/10.1016/j.sjbs.2020.12.040.

  49. Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, et al. Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutr. 2010;61:473–96. https://doi.org/10.3109/09637480903455971.

    Article  CAS  PubMed  Google Scholar 

  50. Saikali J, Picard C, Freitas M, Holt P. Fermented milks, probiotic cultures, and colon cancer. Nutr Cancer. 2004;49:14–24. https://doi.org/10.1207/s15327914nc4901_3.

    Article  PubMed  Google Scholar 

  51. Yadav H, Jain S, Sinha PR. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition. 2007;23:62–8. https://doi.org/10.1016/j.nut.2006.09.002.

    Article  PubMed  Google Scholar 

  52. Lee S, Lee S, Singh D, Oh JY, Jeon EJ, Ryu HS, et al. Comparative evaluation of microbial diversity and metabolite profiles in doenjang, a fermented soybean paste, during the two different industrial manufacturing processes. Food Chem. 2017;221:1578–86. https://doi.org/10.1016/j.foodchem.2016.10.135.

    Article  CAS  PubMed  Google Scholar 

  53. Peñas E, Martinez-Villaluenga C, Frias J. Chapter 24—Sauerkraut: production, composition, and health benefits. In: Frias J, Martinez-Villaluenga C, Peñas E, editors. Fermented foods in health and disease prevention. Boston: Academic Press; 2017. p. 557–76. https://doi.org/10.1016/B978-0-12-802309-9.00024-8.

  54. Ho CW, Lazim AM, Fazry S, Zaki UKHH, Lim SJ. Varieties, production, composition and health benefits of vinegars: a review. Food Chem. 2017;221:1621–30. https://doi.org/10.1016/j.foodchem.2016.10.128.

    Article  CAS  PubMed  Google Scholar 

  55. Tamang JP, Watanabe K, Holzapfel WH. Review: diversity of microorganisms in global fermented foods and beverages. Front Microbiol. 2016;2016:7. https://doi.org/10.3389/fmicb.2016.00377.

  56. Lv X, Li Y, Cui T, Sun M, Bai F, Li X, et al. Bacterial community succession and volatile compound changes during fermentation of shrimp paste from Chinese Jinzhou region. LWT. 2020;2020:122. https://doi.org/10.1016/j.lwt.2019.108998.

  57. Muhialdin BJ, Zawawi N, Razis AFA, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control. 2021;2021:108140. https://doi.org/10.1016/j.foodcont.2021.108140.

  58. Delavenne E, Ismail R, Pawtowski A, Mounier J, Barbier G, Le Blay G. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control. 2013;30:206–13. https://doi.org/10.1016/j.foodcont.2012.06.043.

    Article  CAS  Google Scholar 

  59. Banjara N, Suhr MJ, Hallen-Adams HE. Diversity of yeast and mold species from a variety of cheese types. Curr Microbiol. 2015;70:792–800. https://doi.org/10.1007/s00284-015-0790-1.

    Article  CAS  PubMed  Google Scholar 

  60. Pimentel TC, Gomes de Oliveira LI, Carvalho de Souza R, Magnani M. Probiotic non-dairy frozen dessert: Technological and sensory aspects and industrial challenges. Trends Food Sci Technol. 2021;107:381–8. https://doi.org/10.1016/j.tifs.2020.11.008.

  61. Aguilar-Toalá JE, Santiago-López L, Peres CM, Peres C, Garcia HS, Vallejo-Cordoba B, et al. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J Dairy Sci. 2017;100:65–75. https://doi.org/10.3168/jds.2016-11846.

    Article  CAS  PubMed  Google Scholar 

  62. Seo DJ, Jung D, Jung S, Yeo D, Choi C. Inhibitory effect of lactic acid bacteria isolated from kimchi against murine norovirus. Food Control. 2020;2020:109. https://doi.org/10.1016/j.foodcont.2019.106881.

  63. Jung YP, Earnest CP, Koozehchian M, Cho M, Barringer N, Walker D, et al. Effects of ingesting a pre-workout dietary supplement with and without synephrine for 8 weeks on training adaptations in resistance-trained males. J Int Soc Sports Nutr. 2017;2017:14. https://doi.org/10.1186/s12970-016-0158-3

  64. Ermolenko EI, Desheva YA, Kolobov AA, Kotyleva MP, Sychev IA, Suvorov AN. Anti-Influenza activity of enterocin B in vitro and protective effect of bacteriocinogenic enterococcal probiotic strain on influenza infection in mouse model. Probiotics Antimicrobial Proteins. 2019;11:705–12. https://doi.org/10.1007/s12602-018-9457-0.

    Article  CAS  PubMed  Google Scholar 

  65. Freitas F, Alves VD, Reis MA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 2011;29:388–98. https://doi.org/10.1016/j.tibtech.2011.03.008.

    Article  CAS  PubMed  Google Scholar 

  66. Yin W, Wang Y, Liu L, He J. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci. 2019;20:3423. https://doi.org/10.3390/ijms20143423.

    Article  CAS  PubMed Central  Google Scholar 

  67. Mende S, Rohm H, Jaros D. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int Dairy J. 2016;52:57–71. https://doi.org/10.1016/j.idairyj.2015.08.002.

    Article  CAS  Google Scholar 

  68. Shiroodi SG, Rasco BA, Lo YM. Influence of xanthan-curdlan hydrogel complex on freeze-thaw stability and rheological properties of whey protein isolate gel over multiple freeze-thaw cycle. J Food Sci. 2015;80:E1498–505. https://doi.org/10.1111/1750-3841.12915.

    Article  CAS  PubMed  Google Scholar 

  69. Lo CT, Ramsden L. Effects of xanthan and galactomannan on the freeze/thaw properties of starch gels. Nahrung. 2000;44:211–4. https://doi.org/10.1002/1521-3803(20000501)44:3%3c211::Aid-food211%3e3.0.Co;2-o.

    Article  CAS  PubMed  Google Scholar 

  70. Rosalam S, England R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme Microb Technol. 2006;39:197–207. https://doi.org/10.1016/j.enzmictec.2005.10.019.

    Article  CAS  Google Scholar 

  71. Folkenberg DM, Dejmek P, Skriver A, Skov Guldager H, Ipsen R. Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. Int Dairy J. 2006;16:111–8. https://doi.org/10.1016/j.idairyj.2004.10.013.

    Article  CAS  Google Scholar 

  72. Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018;9:3057–68. https://doi.org/10.1039/C8FO00118A.

    Article  CAS  PubMed  Google Scholar 

  73. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70:2782–858. https://doi.org/10.1099/ijsem.0.004107.

    Article  CAS  PubMed  Google Scholar 

  74. Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28:668–81. https://doi.org/10.1016/j.tim.2020.03.016.

    Article  CAS  PubMed  Google Scholar 

  75. Sánchez J-I, Martínez B, Guillén R, Jiménez-Díaz R, Rodríguez A. Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Appl Environ Microbiol. 2006;72:7495–502. https://doi.org/10.1128/aem.01078-06.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, et al. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria: structures, physiochemical functions and applications in the food industry. Food Hydrocolloids. 2019;94:475–99. https://doi.org/10.1016/j.foodhyd.2019.03.032.

    Article  CAS  Google Scholar 

  77. Torino M, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol. 2015;2015:6. https://doi.org/10.3389/fmicb.2015.00834.

  78. Looijesteijn PJ, Hugenholtz J. Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J Biosci Bioeng. 1999;88:178–82. https://doi.org/10.1016/S1389-1723(99)80198-4.

  79. Pachekrepapol U, Lucey JA, Gong Y, Naran R, Azadi P. Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains. J Dairy Sci. 2017;100:3424–35. https://doi.org/10.3168/jds.2016-12125.

    Article  CAS  PubMed  Google Scholar 

  80. Shin YC, Kim YH, Lee HS, Cho SJ, Byun SM. Production of Exopolysaccharide pullulan from inulin by a mixed culture of Aureobasidium pullulans and Kluyveromyces fragilis. Biotechnol Bioeng. 1989;33:129–33. https://doi.org/10.1002/bit.260330117.

    Article  CAS  PubMed  Google Scholar 

  81. Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct. 2015;6:679–93. https://doi.org/10.1039/C4FO00529E.

    Article  CAS  PubMed  Google Scholar 

  82. Oleksy M, Klewicka E. Exopolysaccharides produced by Lactobacillus sp.: biosynthesis and applications. Crit Rev Food Sci Nutr. 2018;58:450–62. https://doi.org/10.1080/10408398.2016.1187112.

  83. Nakata M, Kawaguchi T, Kodama Y, Konno A. Characterization of curdlan in aqueous sodium hydroxide. Polymer. 1998;39:1475–81. https://doi.org/10.1016/S0032-3861(97)00417-5.

    Article  CAS  Google Scholar 

  84. Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: a review. Carbohydr Polym. 2019;207:317–32. https://doi.org/10.1016/j.carbpol.2018.11.093.

    Article  CAS  PubMed  Google Scholar 

  85. Mostefaoui A, Hakem A, Yabrir B, Boutaiba S, Badis A. Screening for exopolysaccharide-producing strains of thermophilic lactic acid bacteria isolated from Algerian raw camel milk. Afr J Microbiol Res. 2014;8:2208–14. https://doi.org/10.5897/AJMR2014.6759.

    Article  CAS  Google Scholar 

  86. Maeda H, Zhu X, Suzuki S, Suzuki K, Kitamura S. Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2B T. J Agric Food Chem. 2004;52:5533–8. https://doi.org/10.1021/jf049617g.

    Article  CAS  PubMed  Google Scholar 

  87. Caggianiello G, Kleerebezem M, Spano G. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol. 2016;100:3877–86. https://doi.org/10.1007/s00253-016-7471-2.

    Article  CAS  PubMed  Google Scholar 

  88. Di Cagno R, De Pasquale I, De Angelis M, Buchin S, Rizzello CG, Gobbetti M. Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese. J Dairy Sci. 2014;97:72–84. https://doi.org/10.3168/jds.2013-7078.

    Article  CAS  PubMed  Google Scholar 

  89. Costa NE, Hannon JA, Guinee TP, Auty MAE, McSweeney PLH, Beresford TP. Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat Cheddar cheese. J Dairy Sci. 2010;93:3469–86. https://doi.org/10.3168/jds.2009-3008.

    Article  CAS  PubMed  Google Scholar 

  90. Wolter A, Hager AS, Zannini E, Galle S, Gänzle MG, Waters DM, et al. Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiol. 2014;37:44–50. https://doi.org/10.1016/j.fm.2013.06.009.

    Article  CAS  PubMed  Google Scholar 

  91. Tieking M, Gänzle MG. Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Technol. 2005;16:79–84. https://doi.org/10.1016/j.tifs.2004.02.015.

    Article  CAS  Google Scholar 

  92. Ye P, Wang J, Liu M, Li P, Gu Q. Purification and characterization of a novel bacteriocin from Lactobacillus paracasei ZFM54. LWT. 2021;143: 111125. https://doi.org/10.1016/j.lwt.2021.111125.

    Article  CAS  Google Scholar 

  93. Radaic A, de Jesus MB, Kapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems: the state of the art toward improved bacteriocins. J Controll Release. 2020;321:100–18. https://doi.org/10.1016/j.jconrel.2020.02.001.

    Article  CAS  Google Scholar 

  94. Garsa AK, Kumariya R, Sood SK, Kumar A, Kapila S. Bacteriocin production and different strategies for their recovery and purification. Probiotics Antimicrobial Proteins. 2014;6:47–58. https://doi.org/10.1007/s12602-013-9153-z.

    Article  CAS  PubMed  Google Scholar 

  95. Wessels S, Jelle B, Nes I. Bacteriocins of lactic acid bacteria. In: Report of the Danish Toxicology Centre, Denmark. 1998.

  96. Gálvez A, Abriouel H, López RL, Omar NB. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol. 2007;120:51–70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  97. Guinane CM, Cotter PD, Hill C, Ross RP. Microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota in food. J Appl Microbiol. 2005;98:1316–25. https://doi.org/10.1111/j.1365-2672.2005.02552.x.

    Article  CAS  PubMed  Google Scholar 

  98. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. 2016;100:2939–51. https://doi.org/10.1007/s00253-016-7343-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–88. https://doi.org/10.1038/nrmicro1273.

    Article  CAS  PubMed  Google Scholar 

  100. Barbosa J, Caetano T, Mendo S. Class I and class II lanthipeptides produced by Bacillus spp. J Nat Prod. 2015;78:2850–66. https://doi.org/10.1021/np500424y.

    Article  CAS  PubMed  Google Scholar 

  101. Singh VP. Recent approaches in food bio-preservation—a review. Open Vet J. 2018;8:104–11. https://doi.org/10.4314/ovj.v8i1.16.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jacob F, Siminovitch L, Wollman EL. Comparison between the induced biosynthesis of colicine and of bacteriophage and between their mode of action. Ann Inst Pasteur (Paris). 1953;84:313–8.

    CAS  Google Scholar 

  103. Małaczewska J, Kaczorek-Łukowska E. Nisin—a lantibiotic with immunomodulatory properties: a review. Peptides. 2021;137: 170479. https://doi.org/10.1016/j.peptides.2020.170479.

    Article  CAS  PubMed  Google Scholar 

  104. O’Sullivan JN, O’Connor PM, Rea MC, O’Sullivan O, Walsh CJ, Healy B, et al. Nisin J, a novel natural nisin variant, is produced by “named-content genus-species” Staphylococcus capitis sourced from the human skin microbiota. J Bacteriol. 2020;202:e00639-e719. https://doi.org/10.1128/jb.00639-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hatziioanou D, Gherghisan-Filip C, Saalbach G, Horn N, Wegmann U, Duncan SH, et al. Discovery of a novel lantibiotic nisin O from Blautia obeum A2–162, isolated from the human gastrointestinal tract. Microbiology. 2017;163:1292–305. https://doi.org/10.1099/mic.0.000515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Joo NE, Ritchie K, Kamarajan P, Miao D, Kapila YL. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012;1:295–305. https://doi.org/10.1002/cam4.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kamarajan P, Hayami T, Matte B, Liu Y, Danciu T, Ramamoorthy A, et al. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS ONE. 2015;10: e0131008. https://doi.org/10.1371/journal.pone.0131008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abee T, Krockel L, Hill C. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol. 1995;28:169–85. https://doi.org/10.1016/0168-1605(95)00055-0.

    Article  CAS  PubMed  Google Scholar 

  109. Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol. 2016;120:1449–65. https://doi.org/10.1111/jam.13033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol. 2002;56:117–37. https://doi.org/10.1146/annurev.micro.56.012302.161024.

  111. Li H-W, Xiang Y-Z, Zhang M, Jiang Y-H, Zhang Y, Liu Y-Y, et al. A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: isolation, purification, identification, antibacterial and antibiofilm activity. LWT. 2021;140: 110826. https://doi.org/10.1016/j.lwt.2020.110826.

    Article  CAS  Google Scholar 

  112. Wang Y, Qin Y, Zhang Y, Wu R, Li P. Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes. Food Control. 2019;97:87–93. https://doi.org/10.1016/j.foodcont.2018.10.025.

    Article  CAS  Google Scholar 

  113. Xu C, Fu Y, Liu F, Liu Z, Ma J, Jiang R, et al. Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. LWT. 2021;137:110338. https://doi.org/10.1016/j.lwt.2020.110338.

  114. Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 2016;120:118–32. https://doi.org/10.1016/j.meatsci.2016.04.004.

    Article  CAS  PubMed  Google Scholar 

  115. Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories. 2014;13(Suppl 1):S3–S. https://doi.org/10.1186/1475-2859-13-S1-S3.

  116. Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11:95–105. https://doi.org/10.1038/nrmicro2937.

    Article  CAS  PubMed  Google Scholar 

  117. Delves-Broughton J, Weber G. 3—nisin, natamycin and other commercial fermentates used in food biopreservation. In: Lacroix C, editor. Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Woodhead Publishing; 2011. p. 63–99. https://doi.org/10.1533/9780857090522.1.63.

  118. Geng M, Austin F, Shin R, Smith L. Covalent structure and bioactivity of the type aii lantibiotic salivaricin A2. Appl Environ Microbiol. 2018;84:e02528-e2617. https://doi.org/10.1128/aem.02528-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J. 2006;16:1058–71. https://doi.org/10.1016/j.idairyj.2005.10.026.

    Article  CAS  Google Scholar 

  120. Montalbán-López M, Sánchez-Hidalgo M, Valdivia E, Martínez-Bueno M, Maqueda M. Are bacteriocins underexploited? Novel applications for old antimicrobials. Curr Pharm Biotechnol. 2011;12:1205–20. https://doi.org/10.2174/138920111796117364.

    Article  PubMed  Google Scholar 

  121. Batra LR, Millner PD. Some asian fermented foods and beverages, and associated fungi. Mycologia. 1974;66:942–50. https://doi.org/10.2307/3758313.

    Article  Google Scholar 

  122. Lee SH, Jung JY, Jeon CO. Source tracking and succession of kimchi lactic acid bacteria during fermentation. J Food Sci. 2015;80:M1871–7. https://doi.org/10.1111/1750-3841.12948.

    Article  CAS  PubMed  Google Scholar 

  123. Lee J-J, Choi Y-J, Lee MJ, Park SJ, Oh SJ, Yun Y-R, et al. Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation. Food Res Int. 2020;136: 109591. https://doi.org/10.1016/j.foodres.2020.109591.

    Article  CAS  PubMed  Google Scholar 

  124. Yüksel AK, Bakırcı İ. An investigation of the volatile compound profiles of probiotic yogurts produced using different inulin and demineralised whey powder combinations. Food Sci Biotechnol. 2015;24:807–16. https://doi.org/10.1007/s10068-015-0105-0.

    Article  CAS  Google Scholar 

  125. Settachaimongkon S, Nout MJR, Antunes Fernandes EC, Hettinga KA, Vervoort JM, van Hooijdonk TCM, et al. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int J Food Microbiol. 2014;177:29–36. https://doi.org/10.1016/j.ijfoodmicro.2014.02.008.

  126. Sert D, Mercan E, Dertli E. Characterization of lactic acid bacteria from yogurt-like product fermented with pine cone and determination of their role on physicochemical, textural and microbiological properties of product. LWT. 2017;78:70–6. https://doi.org/10.1016/j.lwt.2016.12.023.

    Article  CAS  Google Scholar 

  127. Serra M, Trujillo AJ, Guamis B, Ferragut V. Flavour profiles and survival of starter cultures of yoghurt produced from high-pressure homogenized milk. Int Dairy J. 2009;19:100–6. https://doi.org/10.1016/j.idairyj.2008.08.002.

    Article  CAS  Google Scholar 

  128. Rasic JL. Nutritive value of yogurt. Cultured dairy products journal (USA). 1987.

  129. Huang Y-y, Yu J-j, Zhou Q-y, Sun L-n, Liu D-m, Liang M-h. Preparation of yogurt-flavored bases by mixed lactic acid bacteria with the addition of lipase. LWT. 2020;131: 109577. https://doi.org/10.1016/j.lwt.2020.109577.

    Article  CAS  Google Scholar 

  130. Delgado-Fernández P, Corzo N, Olano A, Hernández-Hernández O, Moreno FJ. Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. Int Dairy J. 2019;89:77–85. https://doi.org/10.1016/j.idairyj.2018.09.003.

    Article  CAS  Google Scholar 

  131. Ye M, Liu D, Zhang R, Yang L, Wang J. Effect of hawk tea (Litsea coreana L.) on the numbers of lactic acid bacteria and flavour compounds of yoghurt. Int Dairy J. 2012;23:68–71. https://doi.org/10.1016/j.idairyj.2011.09.014.

  132. Zhang X, Zhang S, Xie B, Sun Z. Influence of lactic acid bacteria fermentation on physicochemical properties and antioxidant activity of chickpea yam milk. J Food Qual. 2021;2021:5523356. https://doi.org/10.1155/2021/5523356.

    Article  CAS  Google Scholar 

  133. Łaszkiewicz B, Szymański P, Kołożyn-Krajewska D. The effect of selected lactic acid bacterial strains on the technological and microbiological quality of mechanically separated poultry meat cured with a reduced amount of sodium nitrite. Poult Sci. 2021;100:263–72. https://doi.org/10.1016/j.psj.2020.09.066.

    Article  CAS  PubMed  Google Scholar 

  134. Bruckner S, Albrecht A, Petersen B, Kreyenschmidt J. Characterization and comparison of spoilage processes in fresh pork and poultry. J Food Qual. 2012;35:372–82. https://doi.org/10.1111/j.1745-4557.2012.00456.x.

    Article  CAS  Google Scholar 

  135. Morales PA, Aguirre JS, Troncoso MR, Figueroa GO. Phenotypic and genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold in retail settings. LWT. 2016;73:609–14. https://doi.org/10.1016/j.lwt.2016.06.064.

  136. Boles JA, Pegg R. Meat color. Montana State University and Saskatchewan Food Product Innovation, Program University of Saskatchewan. 2010.

  137. Rubio R, Aymerich T, Bover-Cid S, Guàrdia MD, Arnau J, Garriga M. Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT Food Science and Technology. 2013;54:51–6.10. https://doi.org/10.1016/j.lwt.2013.05.014.

  138. Manzoor A, Jaspal MH, Yaqub T, Haq AU, Nasir J, Avais M, et al. Effect of lactic acid spray on microbial and quality parameters of buffalo meat. Meat Sci. 2020;159: 107923. https://doi.org/10.1016/j.meatsci.2019.107923.

    Article  CAS  PubMed  Google Scholar 

  139. Rzepkowska A, Zielińska D, Ołdak A, Kołożyn-Krajewska D. Organic whey as a source of Lactobacillus strains with selected technological and antimicrobial properties. Int J Food Sci Tech. 2017;52:1983–94. https://doi.org/10.1111/ijfs.13471.

    Article  CAS  Google Scholar 

  140. Ammor MS, Mayo B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat Sci. 2007;76:138–46. https://doi.org/10.1016/j.meatsci.2006.10.022.

    Article  CAS  PubMed  Google Scholar 

  141. Qian J, Wang C, Zhuang H, Nasiru MM, Zhang J, Yan W. Evaluation of meat-quality and myofibrillar protein of chicken drumsticks treated with plasma-activated lactic acid as a novel sanitizer. LWT. 2021;138: 110642. https://doi.org/10.1016/j.lwt.2020.110642.

    Article  CAS  Google Scholar 

  142. Tian L, Hu S, Jia J, Tan W, Yang L, Zhang Q, et al. Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. Food Chem. 2021;341: 128163. https://doi.org/10.1016/j.foodchem.2020.128163.

    Article  CAS  PubMed  Google Scholar 

  143. Wen R, Sun F, Wang Y, Chen Q, Kong B. Evaluation the potential of lactic acid bacteria isolates from traditional beef jerky as starter cultures and their effects on flavor formation during fermentation. LWT. 2021;142: 110982. https://doi.org/10.1016/j.lwt.2021.110982.

    Article  CAS  Google Scholar 

  144. Guo Y, Huang E, Yang X, Zhang L, Yousef AE, Zhong J. Isolation and characterization of a Bacillus atrophaeus strain and its potential use in food preservation. Food Control. 2016;60:511–8. https://doi.org/10.1016/j.foodcont.2015.08.029.

    Article  CAS  Google Scholar 

  145. Santiago-Silva P, Soares NFF, Nóbrega JE, Júnior MAW, Barbosa KBF, Volp ACP, et al. Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control. 2009;20:85–9.10. https://doi.org/10.1016/j.foodcont.2008.02.006.

  146. Margalho LP, Jorge GP, Noleto DAP, Silva CE, Abreu JS, Piran MVF, et al. Biopreservation and probiotic potential of a large set of lactic acid bacteria isolated from Brazilian artisanal cheeses: from screening to in product approach. Microbiol Res. 2021;242: 126622. https://doi.org/10.1016/j.micres.2020.126622.

    Article  CAS  PubMed  Google Scholar 

  147. Devi SM, Halami PM. Detection and characterization of pediocin PA-1/AcH like bacteriocin producing lactic acid bacteria. Curr Microbiol. 2011;63:181–5. https://doi.org/10.1007/s00284-011-9963-8.

    Article  CAS  PubMed  Google Scholar 

  148. Walther B, Schmid A, Sieber R, Wehrmüller K. Cheese in nutrition and health. Dairy Sci Technol. 2008;88:389–405. https://doi.org/10.1051/dst:2008012.

    Article  CAS  Google Scholar 

  149. Pereira CI, Neto DM, Capucho JC, Gião MS, Gomes AMP, Malcata FX. How three adventitious lactic acid bacteria affect proteolysis and organic acid production in model Portuguese cheeses manufactured from several milk sources and two alternative coagulants. J Dairy Sci. 2010;93:1335–44. https://doi.org/10.3168/jds.2009-2294.

    Article  CAS  PubMed  Google Scholar 

  150. Williams AG, Banks JM. Proteolytic and other hydrolytic enzyme activities in non-starter lactic acid bacteria (NSLAB) isolated from cheddar cheese manufactured in the United Kingdom. Int Dairy J. 1997;7:763–74. https://doi.org/10.1016/S0958-6946(97)00092-7.

    Article  CAS  Google Scholar 

  151. Demirci T, Akin N, Sözeri Atik D, Rabia Özkan E, Dertli E, Akyol İ. Lactic acid bacteria diversity and dynamics during ripening of traditional Turkish goatskin Tulum cheese produced in Mut region assessed by culturing and PCR-DGGE. LWT. 2021;138: 110701. https://doi.org/10.1016/j.lwt.2020.110701.

    Article  CAS  Google Scholar 

  152. Gonçalves BL, Muaz K, Coppa CFSC, Rosim RE, Kamimura ES, Oliveira CAF, et al. Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Food Res Int. 2020;136: 109604. https://doi.org/10.1016/j.foodres.2020.109604.

    Article  CAS  PubMed  Google Scholar 

  153. Panebianco F, Giarratana F, Caridi A, Sidari R, De Bruno A, Giuffrida A. Lactic acid bacteria isolated from traditional Italian dairy products: activity against Listeria monocytogenes and modelling of microbial competition in soft cheese. LWT. 2021;137: 110446. https://doi.org/10.1016/j.lwt.2020.110446.

    Article  CAS  Google Scholar 

  154. Kamizake NKK, Silva LCP, Prudencio SH. Effect of soybean aging on the quality of soymilk, firmness of tofu and optimum coagulant concentration. Food Chem. 2016;190:90–6. https://doi.org/10.1016/j.foodchem.2015.05.041.

    Article  CAS  PubMed  Google Scholar 

  155. Li R, Wu Z, Wang Y, Liu W. Pilot study of recovery of whey soy proteins from soy whey wastewater using batch foam fractionation. J Food Eng. 2014;142:201–9. https://doi.org/10.1016/j.jfoodeng.2014.05.004.

    Article  CAS  Google Scholar 

  156. Li C, Rui X, Zhang Y, Cai F, Chen X, Jiang M. Production of tofu by lactic acid bacteria isolated from naturally fermented soy whey and evaluation of its quality. LWT Food Sci Technol. 2017;82:227–34. https://doi.org/10.1016/j.lwt.2017.04.054.

    Article  CAS  Google Scholar 

  157. Yang X, Jiang S, Li L. The gel properties and gastric digestion kinetics of a novel lactic acid bacteria fermented tofu: focusing on the effects of transglutaminase. LWT. 2021;143: 110998. https://doi.org/10.1016/j.lwt.2021.110998.

    Article  CAS  Google Scholar 

  158. Wu H, Dong J-J, Dai Y-Q, Liu X-L, Zhou J-Z, Xia X-D. Effects of lactic acid bacteria fermented yellow whey on the protein coagulation and isoflavones distribution in soymilk. Food Chem. 2021;334: 127484. https://doi.org/10.1016/j.foodchem.2020.127484.

    Article  CAS  PubMed  Google Scholar 

  159. Marazza JA, Nazareno MA, de Giori GS, Garro MS. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J Funct Foods. 2012;4:594–601. https://doi.org/10.1016/j.jff.2012.03.005.

    Article  CAS  Google Scholar 

  160. Cavallini DCU, Bedani R, Bomdespacho LQ, Vendramini RC, Rossi EA. Effects of probiotic bacteria, isoflavones and simvastatin on lipid profile and atherosclerosis in cholesterol-fed rabbits: a randomized double-blind study. Lipids Health Dis. 2009;8:1. https://doi.org/10.1186/1476-511X-8-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gu J, Liu T, Hou J, Pan L, Sadiq FA, Yuan L, et al. Analysis of bacterial diversity and biogenic amines content during the fermentation processing of stinky tofu. Food Res Int. 2018;111:689–98. https://doi.org/10.1016/j.foodres.2018.05.065.

    Article  CAS  PubMed  Google Scholar 

  162. Chao S-H, Tomii Y, Watanabe K, Tsai Y-C. Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. Int J Food Microbiol. 2008;123:134–41. https://doi.org/10.1016/j.ijfoodmicro.2007.12.010.

    Article  CAS  PubMed  Google Scholar 

  163. O'Sullivan DJ, Kim YT, Lee JH. Genomics and genetic engineering of lactic acid bacteria. Reference Module in Food Science: Elsevier; 2020. https://doi.org/10.1016/B978-0-12-818766-1.00121-5.

  164. Martins dos Santos V, Müller M, de Vos WM. Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Curr Opin Biotechnol. 2010;21:539–50. https://doi.org/10.1016/j.copbio.2010.08.003.

  165. Cho SW, Yim J, Seo SW. Engineering tools for the development of recombinant lactic acid bacteria. Biotechnol J. 2020;15:1900344. https://doi.org/10.1002/biot.201900344.

    Article  CAS  Google Scholar 

  166. Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett. 2018;2018:366. https://doi.org/10.1093/femsle/fny291.

  167. Vos P, Simons G, Siezen RJ, de Vos WM. Primary structure and organization of the gene for a procaryotic, cell envelope-located serine proteinase. J Biol Chem. 1989;264:13579–85. https://doi.org/10.1016/S0021-9258(18)80036-9.

    Article  CAS  PubMed  Google Scholar 

  168. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci. 2006;103:15611–6. https://doi.org/10.1073/pnas.0607117103.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Spath K, Heinl S, Grabherr R. Direct cloning in Lactobacillus plantarum: electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete. Microb Cell Fact. 2012;11:141. https://doi.org/10.1186/1475-2859-11-141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sharma A, Gupta G, Ahmad T, Kaur B, Hakeem KR. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J Microbiol Methods. 2020;170: 105862. https://doi.org/10.1016/j.mimet.2020.105862.

    Article  CAS  PubMed  Google Scholar 

  171. Papagianni M. Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact. 2012;11:50. https://doi.org/10.1186/1475-2859-11-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gaspar P, Carvalho AL, Vinga S, Santos H, Neves AR. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv. 2013;31:764–88. https://doi.org/10.1016/j.biotechadv.2013.03.011.

    Article  CAS  PubMed  Google Scholar 

  173. Hugenholtz J, Kleerebezem M. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opin Biotechnol. 1999;10:492–7. https://doi.org/10.1016/S0958-1669(99)00016-6.

    Article  CAS  PubMed  Google Scholar 

  174. Andersen HW, Pedersen MB, Hammer K, Jensen PR. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur J Biochem. 2001;268:6379–89. https://doi.org/10.1046/j.0014-2956.2001.02599.x.

    Article  CAS  PubMed  Google Scholar 

  175. Qiu Z, Fang C, Gao Q, Bao J. A short-chain dehydrogenase plays a key role in cellulosic D-lactic acid fermentability of Pediococcus acidilactici. Bioresour Technol. 2020;297: 122473. https://doi.org/10.1016/j.biortech.2019.122473.

    Article  CAS  PubMed  Google Scholar 

  176. Wei Y, Li F, Li L, Huang L, Li Q. Genetic and biochemical characterization of an exopolysaccharide with in vitro antitumoral activity produced by lactobacillus fermentum YL-11. Front Microbiol. 2019;10:2898. https://doi.org/10.3389/fmicb.2019.02898.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kristjansdottir T, Bosma EF, Santos FBd, Özdemir E, Herrgård MJ, França L, et al. A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. bioRxiv. 2019;2019:708875. https://doi.org/10.1101/708875.

  178. Eom J-E, Park J-Y, Moon G-S. Increased bacteriocin activity of a recombinant Pediococcus acidilactici. Food Sci Biotechnol. 2012;21:1781–4. https://doi.org/10.1007/s10068-012-0238-3.

    Article  CAS  Google Scholar 

  179. Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol. 2005;68:705–17. https://doi.org/10.1007/s00253-005-0107-6.

    Article  CAS  PubMed  Google Scholar 

  180. Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories—evaluation of strain properties and genetic tools. Biotechnol Adv. 2017;35:419–42. https://doi.org/10.1016/j.biotechadv.2017.04.002.

    Article  CAS  PubMed  Google Scholar 

  181. Jimenez JN, Lindemann-Matthies P. Public knowledge and perception of toads and frogs in three areas of subtropical southeast China. Soc Anim. 2015;23:166–92. https://doi.org/10.1163/15685306-12341368.

    Article  Google Scholar 

  182. Nguyen T-T, Nguyen H-M, Geiger B, Mathiesen G, Eijsink VGH, Peterbauer CK, et al. Heterologous expression of a recombinant lactobacillal β-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system. Microb Cell Fact. 2015;14:30. https://doi.org/10.1186/s12934-015-0214-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhou D, Jiang Z, Pang Q, Zhu Y, Wang Q, Qi Q, et al. CRISPR/Cas9-assisted seamless genome editing in Lactobacillus plantarum and its application in N-acetylglucosamine production. Appl Environ Microbiol. 2019;85:e01367-e1419. https://doi.org/10.1128/AEM.01367-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang C, Cui Y, Qu X. Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (LAB). J Microbiol Methods. 2020;174: 105944. https://doi.org/10.1016/j.mimet.2020.105944.

    Article  CAS  PubMed  Google Scholar 

  185. Guo T, Xin Y, Zhang Y, Gu X, Kong J. A rapid and versatile tool for genomic engineering in Lactococcus lactis. Microb Cell Fact. 2019;18:22. https://doi.org/10.1186/s12934-019-1075-3.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Landete JM, Arqués JL, Peirotén Á, Langa S, Medina M. An improved method for the electrotransformation of lactic acid bacteria: a comparative survey. J Microbiol Methods. 2014;105:130–3. https://doi.org/10.1016/j.mimet.2014.07.022.

    Article  CAS  PubMed  Google Scholar 

  187. Welker DL, Coburn BM, McClatchy JH, Broadbent JR. Multiple pulse electroporation of lactic acid bacteria Lactococcus lactis and Lactobacillus casei. J Microbiol Methods. 2019;166: 105741. https://doi.org/10.1016/j.mimet.2019.105741.

    Article  CAS  PubMed  Google Scholar 

  188. Welker DL, Hughes JE, Steele JL, Broadbent JR. High efficiency electrotransformation of Lactobacillus casei. FEMS Microbiol Lett. 2014;362:1–6. https://doi.org/10.1093/femsle/fnu033.

    Article  CAS  PubMed  Google Scholar 

  189. Sato’o Y, Aiba Y, Kiga K, Watanabe S, Sasahara T, Hayakawa Y, et al. Optimized universal protocol for electroporation of both coagulase-positive and -negative Staphylococci. J Microbiol Methods. 2018;146:25–32. https://doi.org/10.1016/j.mimet.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  190. Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol. 2016;34:575–87. https://doi.org/10.1016/j.tibtech.2016.02.004.

  191. Pines G, Freed EF, Winkler JD, Gill RT. Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth Biol. 2015;4:1176–85. https://doi.org/10.1021/acssynbio.5b00009.

    Article  CAS  PubMed  Google Scholar 

  192. Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett. 2019;2019:366. https://doi.org/10.1093/femsle/fny291.

  193. Crawley AB, Henriksen ED, Stout E, Brandt K, Barrangou R. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Sci Rep. 2018;8:11544. https://doi.org/10.1038/s41598-018-29746-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bron PA, Marcelli B, Mulder J, van der Els S, Morawska LP, Kuipers OP, et al. Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria. Curr Opin Biotechnol. 2019;56:61–8. https://doi.org/10.1016/j.copbio.2018.09.004.

    Article  CAS  PubMed  Google Scholar 

  195. Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol. 2016;34:575–87. https://doi.org/10.1016/j.tibtech.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  196. de Vos WM, Hugenholtz J. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 2004;22:72–9. https://doi.org/10.1016/j.tibtech.2003.11.011.

    Article  CAS  PubMed  Google Scholar 

  197. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12. https://doi.org/10.1126/science.1138140.

    Article  CAS  PubMed  Google Scholar 

  198. Jang YJ, Seo SO, Kim SA, Li L, Kim TJ, Kim SC, et al. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system. J Biotechnol. 2017;251:151–5.10. https://doi.org/10.1016/j.jbiotec.2017.04.018.

  199. Els Svd, James JK, Kleerebezem M, Bron PA, Atomi H. Versatile Cas9-driven subpopulation selection toolbox for Lactococcus lactis. Appl Environ Microbiol. 2018;84:e02752–17. https://doi.org/10.1128/AEM.02752-17.

  200. Oh J-H, van Pijkeren J-P. CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014;42:e131-e. https://doi.org/10.1093/nar/gku623.

  201. Oliveira AP, Nielsen J, Förster J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 2005;5:39. https://doi.org/10.1186/1471-2180-5-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol. 2010;87:635–46. https://doi.org/10.1007/s00253-010-2480-z.

    Article  CAS  PubMed  Google Scholar 

  203. Hidalgo-Cantabrana C, Goh YJ, Pan M, Sanozky-Dawes R, Barrangou R. Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proc Natl Acad Sci. 2019;116:15774–83. https://doi.org/10.1073/pnas.1905421116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, et al. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. The GenBank accession number for the sequence reported in this paper is AY046926. Microbiology. 2002;148:1003–13. https://doi.org/10.1099/00221287-148-4-1003.

    Article  CAS  PubMed  Google Scholar 

  205. Mollet B, Delley M. Spontaneous deletion formation within the beta-galactosidase gene of Lactobacillus bulgaricus. J Bacteriol. 1990;172:5670–6. https://doi.org/10.1128/jb.172.10.5670-5676.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Papagianni M, Avramidis N, Filiousis G. Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture. Microb Cell Fact. 2007;6:16. https://doi.org/10.1186/1475-2859-6-16.

  207. Even S, Lindley ND, Cocaign-Bousquet M. Molecular physiology of sugar catabolism in Lactococcus lactis IL1403. J Bacteriol. 2001;183:3817–24. https://doi.org/10.1128/JB.183.13.3817-3824.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Garrigues C, Mercade M, Cocaign-Bousquet M, Lindley ND, Loubiere P. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnol Bioeng. 2001;74:108–15. https://doi.org/10.1002/bit.1100.

    Article  CAS  PubMed  Google Scholar 

  209. Lapierre L, Mollet B, Germond J-E. Regulation and adaptive evolution of lactose operon expression in Lactobacillus delbrueckii. J Bacteriol. 2002;184:928–35. https://doi.org/10.1128/jb.184.4.928-935.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Selle K, Andersen JM, Barrangou R. Short communication: transcriptional response to a large genomic island deletion in the dairy starter culture Streptococcus thermophilus. J Dairy Sci J. 2019;102:7800–6. https://doi.org/10.3168/jds.2019-16397.

    Article  CAS  Google Scholar 

  211. Pastink MI. Comparative functional genomics of amino acid metabolism of lactic acid bacteria. [S.l].: S.n.; 2009.

  212. Sieuwerts S. Analysis of molecular interactions between yoghurt bacteria by an integrated genomics approach. [S.l.: S.n.]; 2009.

  213. Adimpong DB, Nielsen DS, Sørensen KI, Derkx PM, Jespersen L. Genotypic characterization and safety assessment of lactic acid bacteria from indigenous African fermented food products. BMC Microbiol. 2012;12:75. https://doi.org/10.1186/1471-2180-12-75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Xin Y, Guo T, Mu Y, Kong J. Coupling the recombineering to Cre-lox system enables simplified large-scale genome deletion in Lactobacillus casei. Microb Cell Fact. 2018;17:21. https://doi.org/10.1186/s12934-018-0872-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Koebmann BJ, Andersen HW, Solem C, Jensen PR. Experimental determination of control of glycolysis in Lactococcus lactis. Antonie Van Leeuwenhoek. 2002;82:237–48. https://doi.org/10.1023/A:1020643918089.

    Article  CAS  PubMed  Google Scholar 

  216. Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems biology—a guide for understanding and developing improved strains of lactic acid bacteria. Front Microbiol. 2019;10:876. https://doi.org/10.3389/fmicb.2019.00876.

  217. Chen J, Shen J, Ingvar Hellgren L, Ruhdal Jensen P, Solem C. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci Rep. 2015;5:14199. https://doi.org/10.1038/srep14199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science & ICT) (No. NRF2019M3E6A1103839, NRF-2020R1A2B5B02001757) and supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020H1D3A1A04081081).

Author information

Authors and Affiliations

Authors

Contributions

TR: investigation, data curation, methodology, writing-original draft. KC: methodology, writing-original draft and editing. ANK: methodology, writing-original draft and editing. S-HK: conceptualization, funding acquisition, supervision, writing—review and editing.

Corresponding author

Correspondence to Sang-Hyoun Kim.

Ethics declarations

Conflicts of interest

All authors declared no conflict of interest including financial, personal and other relationships with other people and other organizations for the submitted work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors mutually agreed to submit the manuscript to SMAB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, T., Chandrasekhar, K., Kumar, A.N. et al. Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries. Syst Microbiol and Biomanuf 2, 14–40 (2022). https://doi.org/10.1007/s43393-021-00044-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00044-w

Keywords

Navigation