Skip to main content

Advertisement

Log in

Bacteriocin Production and Different Strategies for Their Recovery and Purification

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bacteriocins from lactic acid bacteria (LAB) are a diverse group of antimicrobial proteins/peptides, offering potential as biopreservatives, and exhibit a broad spectrum of antimicrobial activity at low concentrations along with thermal as well as pH stability in foods. High bacteriocin production usually occurs in complex media. However, such media are expensive for an economical production process. For effective use of bacteriocins as food biopreservatives, there is a need to have heat-stable wide spectrum bacteriocins produced with high-specific activity in food-grade medium. The main hurdles concerning the application of bacteriocins as food biopreservatives is their low yield in food-grade medium and time-consuming, expensive purification processes, which are suitable at laboratory scale but not at industrial scale. So, the present review focuses on the bacteriocins production using complex and food-grade media, which mainly emphasizes on the bacteriocin producer strains, media used, different production systems used and effect of different fermentation conditions on the bacteriocin production. In addition, this review emphasizes the purification processes designed for efficient recovery of bacteriocins at small and large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abriouel H, Valdivia E, Martinez-Bueno M, Maqueda M, Galvez A (2003) A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32. J Microbiol Methods 55:599–605

    Article  CAS  Google Scholar 

  2. Amiali MN, Lacroix C, Simard RE (1998) High nisin Z production by Lactococcus lactis UL719 in whey permeate with aeration. World J Microbiol Biotechnol 14:887–894

    Article  CAS  Google Scholar 

  3. Anastasiadou S, Papagianni M, Filiousis G, Ambrosiadis I, Koidis P (2008) Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization. Bioresour Technol 99:5348–5390

    Google Scholar 

  4. Bauer R, Chikindas ML, Dicks LMT (2005) Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832. Int J Food Microbiol 101:17–27

    Article  CAS  Google Scholar 

  5. Beaulieu L, Aomari H, Groleau D, Subirade M (2006) An improved and simplified method for the large-scale purification of pediocin PA-1 produced by Pediococcus acidilactici. Biotechnol Appl Biochem 43:77–84

    Article  CAS  Google Scholar 

  6. Bertrand N, Fliss I, Lacroix C (2001) High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. Int Dairy J 11:953–960

    Article  CAS  Google Scholar 

  7. Bhowmik T, Marth EH (1990) β-Galactosidase of pediococcus species: induction, purification and partial characterization. Appl Microbiol Biotechnol 33:317–323

    Article  CAS  Google Scholar 

  8. Bhugaloo-Vial P, Grajek W, Dousset X, Boyaval P (1997) Continuous bacteriocin production with high cell density bioreactors. Enzyme Microbial Technol 21:450–457

    Article  CAS  Google Scholar 

  9. Biswas SR, Ray P, Johnson MC, Ray B (1991) Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl Environ Microbiol 57:1265–1267

    CAS  Google Scholar 

  10. Bonade A, Murelli F, Vescovo M, Scolari G (2001) Partial characterization of a bacteriocin produced by Lactobacillus helveticus. Lett Appl Microbiol 33:153–158

    Article  CAS  Google Scholar 

  11. Callewaert R, De Vuyst L (1999) Expanded bed adsorption as a unique unit operation for the isolation of bacteriocins from fermentation media. Bioseparation 8:159–168

    Article  CAS  Google Scholar 

  12. Callewaert R, Holo H, Devreese B, Van Beeumen J, Nes I, De Vuyst L (1999) Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method. Microbiology 145:2559–2568

    CAS  Google Scholar 

  13. Carolissen-Mackay V, Arendse G, Hastings JW (1997) Purification of bacteriocins of lactic-acid bacteria: problems and pointers. Int J Food Microbiol 34:1–16

    Article  CAS  Google Scholar 

  14. Carvalho KG, Bambirra FHS, Kruger MF, Barbosa MS, Oliviera JS, Santos AMC, Nicoli JR, Bemquerer MP, Miranda A, Salvucci EJ, Sesma FJM, Franco BDGM (2010) Antimicrobial compounds produced by Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product. J Ind Microbiol Biotechnol 37:381–390

    Article  CAS  Google Scholar 

  15. Casadei G, Grilli E, Piva A (2009) Pediocin A modulates intestinal microflora metabolism in swine in vitro intestinal fermentations. J Anim Sci 87:2020–2028

    Article  CAS  Google Scholar 

  16. Casarin F, Cladera-Olivera F, Brandelli A (2008) Use of poultry byproduct for production of keratinolytic enzymes. Food Bioprocess Tech 1:301–305

    Article  Google Scholar 

  17. Cheigh CI, Kook MC, Kim SB, Hong YH, Pyun YR (2004) Simple one-step purification of nisin Z from uncalrified culture broth of Lactococcus lactis subsp. lactis A164 using expanded bed ion exchange chromatography. Biotechnol Lett 26:1341–1345

    Article  CAS  Google Scholar 

  18. Cho HY, Yousef AE, Yang ST (1996) Continuous production of pediocin by immobilized Pediococcus acidilactici PO2 in a packed-bed bioreactor. Appl Microbiol Biotechnol 45:589–594

    Article  CAS  Google Scholar 

  19. Chumchalova J, Stiles J, Josephsen J, Plockova M (2004) Characterization and purification of acidocin CH5, a bacteriocin produced by Lactobacillus acidophilus CH5. J Appl Microbiol 96:1082–1089

    Article  CAS  Google Scholar 

  20. Cintas LM, Rodriguez JM, Fernandez MF, Sletten K, Nes IF, Hernandez PE, Holo H (1995) Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 61(7):2643–2648

    CAS  Google Scholar 

  21. Cladera-Olivera F, Caron GR, Brandelli A (2004) Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochem Eng J 21:53–58

    Article  CAS  Google Scholar 

  22. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  23. Coventry MJ, Gordon JB, Alexander M, Hickey MW, Wan J (1996) A food-grade process for isolation and partial purification of bacteriocins of lactic acid bacteria that uses diatomite calcium silicate. Appl Environ Microbiol 62:1764–1769

    CAS  Google Scholar 

  24. Daba H, Lacroix C, Huang J, Simard RE (1993) Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Appl Microbiol Biotechnol 39:166–177

    CAS  Google Scholar 

  25. Daeschel MA (1990) Application of bacteriocins in food system. In: Bills DD, King SD (eds) Biotechnology and food safety. Butterworth-Heinemann, Boston, pp 19–103

    Google Scholar 

  26. Daeschel MA (1992) Bacteriocins of lactic acid bacteria. In: Ray B, Daeschel MA (eds) Food biopreservatives of microbial origin. CRC, Boca Raton, pp 323–345

    Google Scholar 

  27. De Vuyst L (1995) Nutritional factors affecting nisin production by Lactococcus lactis subsp. lactis NIZO 22186 in a synthetic medium. J Appl Bacteriol 78:28–33

    Article  CAS  Google Scholar 

  28. De Vuyst L, Callewaert R, Crabbe AK (1996) Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142:817–827

    Article  Google Scholar 

  29. De Vuyst L, Vandamme EJ (1994) Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: properties, biosynthesis, fermentation and applications. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria. Blackie, London, pp 151–221

    Chapter  Google Scholar 

  30. Deegan LH, Cotter PD, Hilla C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071

    Article  CAS  Google Scholar 

  31. Degnan AJ, Yousef AE, Luchansky JB (1992) Use of Pediococcus acidilactici to control Listeria monocytogenes in temperature abused vacuum-packaged wieners. J Food Prot 55:98–103

    Google Scholar 

  32. Deraz S, Plieva FM, Galaev IY, Karlsson EN, Mattiasson B (2007) Capture of bacteriocins directly from non-clarified fermentation broth using macroporous monolith cryogels with phenyl ligands. Enzyme Microbial Technol 40:786–793

    Article  CAS  Google Scholar 

  33. Desjardins P, Meghrous J, Lacroix C (2001) The effect of aeration and dilution rate on nisin Z production during continuous fermentation of with free and immobilized Lactoccocus lactis UL719 in supplemented whey permeate. Int Dairy J 11:943–951

    Article  CAS  Google Scholar 

  34. Egorov NS, Baranova IP, Kozlova YI, Volkov AG, Grushina VA, Isai EI, Isai PP, Sidorenko AT (1980) A new nutrient medium for Streptococcus lactis producing nisin. Antibiotiki 25:260–263

    CAS  Google Scholar 

  35. Elegado FB, Kim WJ, Kwon DY (1997) Rapid purification, partial characterization and antimicrobial spectrum of the bacteriocin, pediocin AcM, from Pediococcus acidilactici M. Int J Food Microbiol 37:1–11

    Article  CAS  Google Scholar 

  36. Fimland G, Johnsen L, Bruberg MB, Nes IF, Eijsink VGH, Nissen-Meyer J (2000) A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J Bacteriol 182:2643–2648

    Article  CAS  Google Scholar 

  37. Fimland G, Sletten K, Nissen-Meyer J (2002) The complete amino acid sequence of the pediocin-like antimicrobial peptide leucocin C. Biochem Biophys Res Commun 295:826–827

    Article  CAS  Google Scholar 

  38. Fleury Y, Dayem MA, Montagne JJ, Chaboisseau E, Le Caer JP, Nicolas P, Delfour A (1996) Covalent structure, synthesis, and structure function studies of mesentericin Y 105(37), a defensive peptide from grampositive bacteria Leuconostoc mesenteroides. J Biological Chem 71:14421–14429

    Google Scholar 

  39. Foulquié Moreno MR, Callewaert R, De Vuyst L (2001) Isolation of bacteriocins through expanded bed adsorption using a hydrophobic interaction medium. Bioseparation 10:45–50

    Article  Google Scholar 

  40. Foulquié Moreno MR, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J Appl Microbiol 94:214–229

    Article  Google Scholar 

  41. Foulquié Moreno MR, Leisner JJ, Tee LK, Ley C, Radu S, Rusul G, Vancanneyt M, De Vuyst L (2002) Microbial analysis of Malaysian tempeh, and characterization of two bacteriocins produced by isolates of Enterococcus faecium. J Appl Microbiol 92:147–157

    Article  Google Scholar 

  42. Georgalaki MD, Berghe EV, Kritikos D, Devreese B, Beeumen JV, Kalantzopoulos G, Vuyst LD, Tsakalidou E (2002) Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Appl Environ Microbiol 68(12):5891–5903

    Article  CAS  Google Scholar 

  43. Ghrairi T, Frere J, Berjeaud JM, Manai M (2008) Purification and characterization of bacteriocins produced by Enterococcus faecium from Tunisian rigouta cheese. Food Control 19:162–169

    Article  CAS  Google Scholar 

  44. Gonzalez MIG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Article  Google Scholar 

  45. Goulhen F, Meghrous J, Lacroix C (1999) Production of a nisin Z/pediocin mixture by pH-controlled mixed-strain batch cultures in supplemented whey permeate. J Appl Microbiol 86:399–406

    Article  CAS  Google Scholar 

  46. Guerra NP, Agrasar AT, Macias CL, Pastrana L (2005) Modelling the fed-batch production of pediocin using mussel processing wastes. Process Biochem 40:1071–1083

    Article  CAS  Google Scholar 

  47. Guerra NP, Bernardez PF, Agrasar AT, Macias CL, Pastrana L (2005) Fed-batch pediocin production by Pediococcus acidilactici NRRLB5627 on whey. Biotechnol Appl Biochem 42:17–23

    Article  CAS  Google Scholar 

  48. Guerra NP (2001) Pastrana L (2001) Enhanced nisin and pediocin production on whey supplemented with different nitrogen sources. Biotechnol Lett 23:609–612

    Article  CAS  Google Scholar 

  49. Guerra NP, Pastrana L (2002) Dynamics of pediocin biosynthesis in batch fermentation on whey. Elec J Env Agricult Food Chem 1:96–106

    Google Scholar 

  50. Guerra NP, Pastrana L (2002) Modelling the influence of pH on the kinetics of both nisin and pediocin production and characterization of their functional properties. Process Biochem 37:1005–1015

    Article  CAS  Google Scholar 

  51. Guerra NP, Pastrana L (2002) Nisin and pediocin production on mussel-processing waste supplemented with glucose and five nitrogen sources. Lett Appl Microbiol 34:114–118

    Article  CAS  Google Scholar 

  52. Guerra NP, Pastrana L (2003) Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures. Biotechnol Appl Biochem 38:157–167

    Article  CAS  Google Scholar 

  53. Guerra NP, Pastrana L (2003) Influence of pH drop on both nisin and pediocin production by Lactococcus lactis and Pediococcus acidilactici. Lett Appl Microbiol 37:51–55

    Article  CAS  Google Scholar 

  54. Guerra NP, Rua ML, Pastrana L (2001) Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int J Food Microbiol 70:271–285

    Article  Google Scholar 

  55. Guyonnet D, Fremaux C, Cenatiempo Y, Berjeaud JM (2000) Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl Environ Microbiol 66(4):1744–1748

    Article  CAS  Google Scholar 

  56. Halami PM, Chandrashekar A (2005) Enhanced production of pediocin C20 by a native strain of Pediococcus acidilactici C20 in an optimized food-grade medium. Process Biochem 40:1835–1840

    Article  CAS  Google Scholar 

  57. Hanlin MB, Kalchayanand N (1993) Bacteriocins of lactic acid bacteria in combination have greater antibacterial activity. J Food Prot 56:252–255

    CAS  Google Scholar 

  58. Holck A, Axelsson L, Birkeland S-E, Aukrust T, Blom H (1992) Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbial 138:2715–2720

    Article  CAS  Google Scholar 

  59. Hoover DG, Dishart KJ, Hermes MA (1989) Antagonistic effect of Pediococcus spp. against Listeria monocytogenes. Food Biotechnol 3:183–196

    Article  Google Scholar 

  60. Hoover DG, Walsh PM, Kolaetis KM, Daly MM (1988) A bacteriocin produced by Pediococcus species associated with a 5.5-megadalton plasmid. J Food Prot 51:29–31

    CAS  Google Scholar 

  61. Huaxi Y, Lanwei Z, Yanfeng T, Xue H, Ming D (2010) A novel method for rapid detection of class IIa bacteriocin-producing lactic acid bacteria. Food Control 21:426–430

    Article  Google Scholar 

  62. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200

    CAS  Google Scholar 

  63. Janes ME, Nannapaneni R, Proctor A, Johnson MG (1998) Rice hull ash and silicic acid as adsorbents for concentration of bacteriocins. Appl Environ Microbiol 64:4403–4409

    CAS  Google Scholar 

  64. Jozala AF, Silva DP, Vicente AA, Teixeira JA, Junior AP, Penna TCV (2011) Processing of byproducts to improve nisin production by Lactococcus lactis. Afr J Biotech 10:14920–14925

    Article  CAS  Google Scholar 

  65. Kim WS, Hall RJ, Dunn NW (1997) The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl Microbiol Biotechnol 48:449–453

    Article  CAS  Google Scholar 

  66. Krier F, Revol-Junelles AM, Germain P (1998) Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp mesenteroides FR52 during batch fermentation. Appl Microbiol Biotechnol 50:359–363

    Article  CAS  Google Scholar 

  67. Li C, Bai J, Cai Z, Ouyang F (2002) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J Biotechnol 93:27–34

    Article  CAS  Google Scholar 

  68. Liao CC, Yousef AE, Richter ER, Chism GW (1993) Pediococcus acidilactici PO2 bacteriocin production in whey permeate and inhibition of Listeria monocytogenes in foods. J Food Sci 58:430–434

    Article  Google Scholar 

  69. Line JE, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Levchuk VP, Svetoch OE, Seal BS, Siragusa GR, Stem NJ (2008) Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 52(3):1094–1100

    Article  CAS  Google Scholar 

  70. Liu X, Chung YK, Yang ST, Yousef AE (2005) Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem 40:13–24

    Article  CAS  Google Scholar 

  71. Lopez RL, Garcia MT, Abriouel H, Omar NB, Grande MJ, Martinez-Canamero M, Antonio G (2007) Semi-preparative scale purification of enterococcal bacteriocin EJ97, and evaluation of substrates for its production. J Ind Microbiol Biotechnol 34:779–785

    Article  CAS  Google Scholar 

  72. Lozano JCN, Meyer JN, Sletten K, Pelaz C, Nes IF (1992) Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol 138:1985–1990

    Article  Google Scholar 

  73. Martinez JM, Martinez MI, Suarez AM, Herranz C, Casaus P, Cintas LM, Rodriguez JM, Hernandez PE (1998) Generation of polyclonal antibodies of predetermined specificity against pediocin PA-1. Appl Environ Microbiol 64:4536–4545

    CAS  Google Scholar 

  74. Mehla J, Sood SK (2011) Acidic pH enhances activity/yield of an YGNGV motif containing antimicrobial peptide isolated and purified from Pediococcus pentosaceus NCDC273, a dairy strain. Int J Probiotics Prebiotics 6(2):81–88

    Google Scholar 

  75. Mehla J, Sood SK (2011) Substantiation in Enterococcus faecalis of dose dependent resistance and cross resistance to pore forming antimicrobial peptides by use of a polydiacetylene based colorimetric assay. Appl Environ Microbiol 77(3):786–793

    Article  CAS  Google Scholar 

  76. Metivier Boyaval P, Duffes F, Dousset X, Compoint JP, Marion D (2000) Triton X-114 phase partitioning for the isolation of a pediocin-like bacteriocin from Carnobacterium divergens. Lett Appl Microbiol 30:42–46

    Article  Google Scholar 

  77. Millette M, Dupont C, Shareck F, Ruiz MT, Archambault D, Lacroix M (2008) Purification and identification of the pediocin produced by Pediococcus acidilactici MM33, a new human intestinal strain. J Appl Microbiol 104:269–275

    CAS  Google Scholar 

  78. Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. Strain P34. World J Microbiol Biotechnol 24:641–646

    Article  CAS  Google Scholar 

  79. Muriana PM (1996) Bacteriocins for control Listeria spp. in food. J Food Prot (Supplement):54–63

  80. Naghmouchi K, Fliss I, Drider D, Lacroix C (2008) Pediocin PA-1 production during repeated-cycle batch culture of immobilized Pediococcus acidilactici UL5 cells. J Biosci Bioeng 105:513–517

    Article  CAS  Google Scholar 

  81. Osmanagaoglu O, Gunduz U, Beyatli Y, Cokmus C (1998) Purification and characterization of pediocin F, a bacteriocin produced by Pediococcus acidilactici F. Turk J Bio 22:217–228

    CAS  Google Scholar 

  82. Parente E, Hill C (1992) A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J Appl Bacteriol 73:290–298

    Article  CAS  Google Scholar 

  83. Parente E, Ricciardi A (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Lett Appl Microbiol 19:12–15

    Article  CAS  Google Scholar 

  84. Pilasombut K, Sakpuaram T, Wajjwalku W, Nitisinprasert S, Swetwiwathana A, Zendo T, Fujita K, Nakayama J, Sonomoto K (2006) Purification and amino acid sequence of a bacteriocins produced by Lactobacillus salivarius K7 isolated from chicken intestine. Songklanakarin J Sci Technol 28:121–131

    Google Scholar 

  85. Piva A, Headon DR (1994) Pediocin A, a bacteriocin produced by Pediococcus pentosaceus FBB61. Microbiology 140:697–702

    Article  CAS  Google Scholar 

  86. Ray B, Hoover DG (1993) Pediocins. In: Bacteriocins of lactic acid bacteria. Academic Press, New York, pp 181–210

  87. Saint-Hubert C, Durieux A, Bodo E, Simon JP (2009) Large scale purification protocol for carnocin KZ213 from Carnobacterium piscicola. Biotechnol Lett 31:519–523

    Article  CAS  Google Scholar 

  88. Sood SK, Sinha PR (2009) Acidocin S2 contaning powder obtained upon freeze-drying of fermented paneer whey reduces total viable count during storage of processed cheese. Ind J Dairy Sci 62:486–490

    CAS  Google Scholar 

  89. Sood SK, Vijay Simha B, Kumariya R, Garsa AK, Mehla J, Meena S, Lather P (2013) Highly specific culture-independent detection of YGNGV motif-containing pediocin-producing strains. Probiotics Antimicro Prot 5:37–42

    Article  CAS  Google Scholar 

  90. Todorov S, Onno B, Sorokine O, Chobert JM, Ivanova I, Dousset X (1999) Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST31 isolated from sourdough. Int J Food Microbiol 48:167–177

    Article  CAS  Google Scholar 

  91. Tulini FL, De Martinis ECP (2010) Improved adsorption-desorption extraction applied to the partial characterization of the antilisterial bacteriocin produced by Carnobacterium maltaromaticum C2. Braz J Microbiol 41:493–496

    Article  CAS  Google Scholar 

  92. Uteng M, Hauge HH, Brondz I, Nissen-Meyer J, Fimland G (2002) Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture medium. Appl Environ Microbiol 68(2):952–956

    Article  CAS  Google Scholar 

  93. Vandenbergh PA, Pucci MJ, Kunka BS, Vedamuthu ER (1990) Method for inhibiting Listeria monocytogenes using a bacteriocin. US Patent 4,929,445

  94. Vedamuthu ER (1995) Method of producing a yogurt product containing bacteriocin PA-1a. US Patent 5,445,835

  95. Venema K, Chikindas ML, Seegers JFMI, Haandrikman AJ, Leenhouts KJ, Venema G, Kok J (1997) Rapid and efficient purification method for small, hydrophobic, cationic bacteriocins: purification of lactococcin B and pediocin PA-1. Appl Environ Microbiol 63:305–309

    CAS  Google Scholar 

  96. Vignolo GM, De Kairuz MN, Holgado AAP, Oliver G (1995) Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 70. J Appl Bacteriol 78:5–10

    Article  CAS  Google Scholar 

  97. Vijay Simha B, Sood SK, Kumariya R, Garsa AK (2012) Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceus NCDC 273 suitable for industrial application. Microbiol Res 167:544–549

    Article  CAS  Google Scholar 

  98. Xiraphi N, Georgalaki M, Rantsiou K, Cocolin L, Tsakalidou E, Drosinos EH (2008) Purification and characterization of a bacteriocin produced by Leuconostoc mesenteroides E131. Meat Sci 80:194–203

    Article  CAS  Google Scholar 

  99. Yang R, Ray B (1994) Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiol 11:281–291

    Article  Google Scholar 

  100. Yousef AE, Luchansky JB, Degnan AJ, Doyle MP (1991) Behavior of Listeria monocytogenes in wiener exudates in the presence of Pediococcus acidilactici H or pediocin AcH during storage at 4 or 25°C. Appl Environ Microbiol 57:1461–1467

    CAS  Google Scholar 

  101. Zalan Z, Nemeth E, Barath A, Halasz A (2005) Influence of growth medium in hydrogen peroxide and bacteriocin production of Lactobacillus strains. Food Technol Biotechnol 43:219–225

    CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Kumari Garsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garsa, A.K., Kumariya, R., Sood, S.K. et al. Bacteriocin Production and Different Strategies for Their Recovery and Purification. Probiotics & Antimicro. Prot. 6, 47–58 (2014). https://doi.org/10.1007/s12602-013-9153-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-013-9153-z

Keywords

Navigation